Analysis for Supporting Real-Time Computer Vision Workloads using OpenVX on Multicore+GPU Platforms

Kecheng Yang
Glenn A. Elliott
James H. Anderson
Dept. of Computer Science
UNC-Chapel Hill
Motivation

• In industry, **vision-based sensing** through cameras is emerging.

• In the automotive industry, it is used to support **features**, such as
 • pedestrian detection,
 • automatic lane-keeping,
 • adaptive cruise control,
 • ultimately, full autonomy.

• Computer vision algorithms are commonly expressed using dataflow graphs.
• A standard computer vision API – OpenVX – has been created that allows for the specification of such graphs.

Node dependencies (i.e., edges) are derived from how data objects are bound to the inputs and outputs of nodes.

Each node is a basic operation in computer vision algorithms.

A given basic operation has a set of well-defined inputs and outputs, and may be performed on either CPU or GPU.
OpenVX v.s. Real-Time

- OpenVX has a simple execution model that eases the development of computer vision applications on heterogeneous platforms.

- However, OpenVX does not fit any real-time scheduling model and lacks any framework for real-time analysis.

- In a recent paper[1], our group developed a new OpenVX implementation that extends a current OpenVX implementation by NVIDIA.

- Our new OpenVX implementation overcomes several problems that handicap real-time analysis.

OpenVX v.s. Real-Time

<table>
<thead>
<tr>
<th>Existing OpenVX implementation</th>
<th>Our extension ([1] provides details)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No notion of repeating (periodic or sporadic) task</td>
<td>The source node of each graph is invoked sporadically</td>
</tr>
<tr>
<td>Does not define a threading model</td>
<td>Each node is assigned a dedicated thread</td>
</tr>
<tr>
<td>Requires a graph to execute end-to-end before it may be re-executed</td>
<td>Graph execution can be pipelined</td>
</tr>
</tbody>
</table>

GPU accesses are managed by GPUSync [2].

GPUs are treated as shared resources and managed by real-time locking protocols. Priority-inversion blocking times are analytically modeled as CPU computation time through suspension-oblivious analysis.

Sporadic DAG

- Each graph is a Directed Acyclic Graph (DAG).
- τ_i^A denotes the task that implements node A in the i^{th} graph.
- A_j denotes the j^{th} invocation (job) of τ_i^A.*
- Each edge denotes a producer/consumer precedence constraint in the same invocation of the graph.

*In the paper, it is denoted as $J_{i,j}^A$.

The source-node task is invoked sporadically.
OpenVX Graphs v.s. Sporadic DAGs

• In an OpenVX graph, **two** kinds of edges may exist.
• Some are the same as edges in DAGs. They are called **forward edges**.
• Another category of edges, denoted by **dotted arrows**, may exist, called **delay edges**.
• Each delay edge denotes a **precedence constraint** pertaining to prior invocations of the graph.
• Delay edges may cause cycles!

C_j needs data from the results of B_{j-1}, B_{j-2}, and B_{j-3}.
Example: Video Stabilization
From OpenVX Graphs to Sporadic DAGs

- Prior work\cite{liu2010supporting,elliott2014minimizing} has shown that, with the sporadic DAG model and under global EDF scheduling, an end-to-end latency bound can be established for each DAG.

- However, due to the existence of delay edges and potential cycles caused by delay edges, this result cannot be applied directly.

Our Approach:

- Do not relax any constraint in the OpenVX graph
- At least as restrictive as the OpenVX graph

Delay-Edge Strengthening Rule

• Because each node is modeled as a sequential sporadic task, the completion of A_j implies the completions of all prior jobs of the same task (including A_{j-1}, A_{j-2},...).

• Therefore, between two nodes, a forward edge is always a more restrictive constraint than a delay edge.

• That is, $\tau_i^A \rightarrow \tau_i^B$ implies $\tau_i^A \rightarrow \tau_i^B$.

Replace a delay edge by a forward edge if it is not a part of a cycle.
Delay-Edge Dropping Rule

• Applies if the application code is adjustable, so that the dependency associated with the delay edge is not based on the immediate history, but rather on history “further in the past”.

• E.g., \(\tau^B_i \leftarrow \tau^A_i \) means that \(B_j \) needs data from the results of \(A_{j-k}, A_{j-k-1}, A_{j-k-2} \), instead of \(A_{j-1}, A_{j-2}, A_{j-3} \).

• A safe \(k \) can be computed such that the end-to-end latency bound guarantees that \(A_{j-k} \) completes before \(B_j \) releases.

• Thus, in this case, the delay edge is not constraining and therefore can be ignored in terms of scheduling.

Drop a delay edge if the application code is adjustable.
Delay-Edge Dropping Rule
Super-Node Creation Rule

• Applies if adjusting the application code is infeasible.
• E.g., \(\tau_i^B \) means that \(B_j \) must use data from the results of \(A_{j-1}, A_{j-2}, A_{j-3} \).
• A super-node is created, and everything in the cycle is serialized.
• I.e., \(B_{j-3}, A_{j-3}, B_{j-2}, A_{j-2}, B_{j-1}, A_{j-1}, B_j, A_j, \ldots \) execute sequentially.

Create a super-node if the application code is not adjustable.
Super-Node Creation Rule
Super-Node Creation Rule

• The super-node creation rule may introduce additional pessimism by sacrificing potential parallelism.

• However, suppose the delay edge requires immediate history.

• If it causes only one cycle, and is the only delay edge in that cycle, which is a common case in many computer vision algorithms, then the sequential execution is actually enforced anyway.
Transformation Flow

If the application code is adjustable:

1. **Delay-Edge Strengthening Rule**
 - Eliminate delay edges that are not a part of a cycle.

2. **Delay-Edge Dropping Rule**
 - Eliminate delay edges that are a part of a cycle.

3. **Super-Node Creation Rule**
 - If the application code is not adjustable, proceed with super-node creation.

DAGs!
Data Overwriting

• The transformation techniques above are only for scheduling and for deriving end-to-end latency bounds.
• Recall that OpenVX specifies dependencies by bounding data objects.
• Existing implementation: a graph is required to execute end-to-end before it may be re-executed.
• Our extension: a graph may execute in a pipelined fashion.

Our solution: replicate the data objects.

Replicate each data object N times. The jth invocation uses the (j mod N)th replica.
Data Replica Bounds

• A **safe bound** on the number of replicas, N, can be derived.

• Intuition:
 • There is a **minimum separation** between DAG invocations.
 • **End-to-end latency** of the DAG is bounded.
 • At a time, the **number of active invocations** is bounded.

• Instead of being associated with a data object, each delay edge is associated with a **ring buffer** that stores the “history” that may be needed in the future.

• Similar techniques can be applied to delay edges to derive a bound on the size of those ring buffers.
Conclusion

- OpenVX is a recently ratified standard that has a graph-based processing model.
- Our recent work\cite{1} extended an existing NVIDIA OpenVX implementation by adding real-time support.
- This paper provides more detailed analysis for that implementation.
 - Transform OpenVX graphs to DAGs, so that end-to-end latencies can be guaranteed by applying prior work on DAGs.
 - Derive upper bounds on data object replicas and buffers, i.e., ensure that our techniques use finite memory.

Thank you! Questions?