Response Time Analysis for G-EDF and G-DM Scheduling of Sporadic DAG-Tasks with Arbitrary Deadline

Andrea Parri, Alessandro Biondi and Mauro Marinoni

Scuola Superiore Sant’Anna – Pisa, Italy
Multicore revolution

New parallel programming models for expressing parallel computational activities
Introduction

Big Data

- Novel programming models based on the Map-Reduce paradigm that relies on parallel processing
Introduction

JUNIPER EU Project – supported this work

- **Goal:** enable application development with performance guarantees required for real-time exploitation of large streaming data sources and stored data;

- **Case-study:** applications for credit cards.
DAG-Task

- Task model for expressing parallel computations with precedence constraints
- A task is described with a Directed Acyclic Graph (DAG)
Vertex – sequential computation with WCET e_i
DAG-Task

Edge – *precedence constraint* among two computational activities
Note: this model allows to express parallelism
DAG-Task

Release of a DAG-Task τ_i

- All the vertices are *released simultaneously* but it can be that not all of them are *enabled* due to precedence constrains.

[Diagram showing a directed acyclic graph (DAG) with vertices $e_1, e_2, e_3, e_4, e_5, e_6, e_7$ and edge labels τ_i. The graph is structured with edges from e_1 to e_3, e_2 to e_4, e_3 to e_5, and e_5 to e_6 and e_7.]
Sporadic DAG-Task

- DAG-Task τ_i
 - Released with a minimum inter-arrival time T_i
 - Each vertex must complete within a deadline D_i
Example

processor 1

\[e_1 \quad e_3 \]

processor 2

\[e_2 \]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(e_1)</td>
<td>2</td>
</tr>
<tr>
<td>(e_2)</td>
<td>2</td>
</tr>
<tr>
<td>(e_3)</td>
<td>1</td>
</tr>
<tr>
<td>(e_4)</td>
<td>1</td>
</tr>
<tr>
<td>(e_5)</td>
<td>2</td>
</tr>
<tr>
<td>(e_6)</td>
<td>3</td>
</tr>
</tbody>
</table>
Example

processor 1

\[e_1, e_3, e_4 \]

processor 2

\[e_2 \]

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e_1)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e_2)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e_3)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e_4)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e_5)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e_6)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scheduling Problem

Given

- a set of N sporadic DAG-Tasks;
- A scheduling algorithm (G-EDF or G-DM);
- A platform with m identical processors;

verify if all deadlines are guaranteed.
State of The Art

Existing schedulability analysis can be split in 3 categories:

- Based on **resource augmentation** (speed-up);

 (Baruah et al., Bonifaci et al., Nilissen et al., ...)

- Based on **capacity augmentation**;

 (Kim et al., Li et al., Lakshmanan et al., ...)

- Based on **Response-Time Analysis**.

 (Maia et al., Chwa et al., Melani et al., ...)

This Work

- Response-Time Analysis of Sporadic DAG-Tasks under both G-EDF and G-DM

Contribution w.r.t. the state of the art:

- Vertices-oriented analysis;
- Tasks can have arbitrary deadlines;
- Vertices can have arbitrary utilization;
- Augmentation bounds proved for N=1.
Response-Time Analysis

- For each DAG-Task τ_i,

- For each vertex v of τ_i,

- Each job of vertex v must complete within a deadline D_i

$$e_v + I_v = R_v \leq D_i$$

Vertex WCET

Worst-case scheduling interference
Response-Time Analysis

- For each DAG-Task τ_i,
 - For each vertex v of τ_i,
 - Each job of vertex v must complete within a deadline D_i

$$e_v + I_v = R_v \leq D_i$$

Not easy to compute for multiprocessor systems!
Response-Time Analysis

- **Our approach**: compute an upper-bound $\overline{I_v}$ of the interference I_v specific for each vertex v, so obtaining a response-time upper-bound $\overline{R_v}$

![Equation]

$$e_v + I_v = R_v \leq$$

$$e_v + \overline{I_v} \Rightarrow R_v \leq \overline{R_v}$$
Main result of this work: we proved that

\[R_v \leq \overline{R}_v \]

\[
\overline{R}_v = \ell^+_v + \left\lfloor \frac{1}{m} \left(\sum_{v'} W_{v,v'}(\overline{R}_v,Y_{v'}) - \ell^+_v \right) \right\rfloor
\]

Critical path length: maximum sum of WCETs in a path ending with \(v \)
Critical Path

- **Critical path length**: maximum sum of WCETs in a path ending with \(\nu \)

\[
\ell_{\nu} = 13
\]

Diagram:

1. \(1 \to 4 \to 2 \to 4 \) with \(1+4+2+4 = 11 \)
2. \(3 \to 6 \to 4 \) with \(3+6+4 = 13 \)
Response-Time Analysis

Main result: we proved that

\[R_v \leq \overline{R}_v \]

\[\overline{R}_v = \ell^+_v + \left[\frac{1}{m} \left(\sum_{v'} W_{v,v'}(\overline{R}_v, Y_{v'}) - \ell^+_v \right) \right] \]

Sum on all vertices \(v' \) in the task-set
Response-Time Analysis

Main result: we proved that

\[R_v \leq \overline{R_v} \]

\[
\overline{R_v} = \ell^+_v + \left[\frac{1}{m} \left(\sum_{v'} W_{v,v'}(\overline{R_v}, Y_{v'}) - \ell^+_v \right) \right]
\]

Upper-bound on the worst-case workload generated by \(v' \) interfering with \(v \)
Worst-Case Workload

- Upper-bound on the worst-case workload generated by \(\nu' \) interfering with \(\nu \)

\[
W_{\nu, \nu'}(\overline{R_\nu}, Y_{\nu'})
\]

Tentative response-time of vertex \(\nu \), used in the fixed-point iteration starting with \(\overline{R_\nu} = e_\nu \)

Response-time upper-bound
Must be always greater than the response-time
(\(Y_{\nu'} = D_\nu + 1 \) in the limit case)
Worst-Case Workload

- A generic vertex v' interferes with v released at t

If shifted more on the left the job of v' will be completed when v is released.

Release of a job of v
Worst-Case Workload

- A generic vertex v' interferes with v released at t

Interfering workload:

$$\left[\frac{Y_{v'} + R_v}{T_{v'}}\right] e_{v'}$$

In case of **G-DM**: Null for vertices of lower-priority tasks
Worst-Case Workload

- A generic vertex v' interferes with v released at t

In case of G-EDF

Jobs of v' released after $t + D_v - D_{v'}$ will not interfere with v
Worst-Case Workload

- A generic vertex \(v' \) interferes with \(v \) released at \(t \)

In case of G-EDF

Interfering workload

\[
\left[Y_{v'} + \min\{ \bar{R}_v, D_v - D_{v'} \} \right] \frac{e_{v'}}{T_{v'}}
\]
Response-Time Analysis

- **Successors** in the same job of a DAG-task cannot interfere
Main result: we proved that

\[R_v \leq \overline{R}_v \]

\[\overline{R}_v = \ell_v^+ + \left[\frac{1}{m} \left(\sum_{v'} w_{v,v'}(\overline{R}_v, Y_{v'}) - \ell_v^+ \right) \right] \]
Schedulability Test

Algorithm $\text{RTA}(N)$
Maximum number of iterations
Schedulability Test

Algorithm RTA\((N)\)

1. We start with \(Y_v = D_v + 1, \forall v, i = 1 \)

2. Compute the fixed-point of

\[
\overline{R_v} = \ell_v^+ + \left[\frac{1}{m} \left(\sum_{v'} W_{v,v'}(\overline{R_{v'}},Y_{v'}) - \ell_v^+ \right) \right]
\]

3. If \(\overline{R_v} \leq D_v \) return **SCHEDULABLE**

4. If \(Y_v = \overline{R_v}, \forall v \) OR \(i==N \) return **NOT SCHEDULABLE**

5. Else, update response-times as \(Y_v = \overline{R_v}, \forall v \) and go to step 2

\(i++ \)

Pseudo-Polynomial Complexity
Polynomial-Time Schedulability Test

- If we set $Y_v = D_v + 1$ and $R_v = D_v$ it is possible to obtain a simple polynomial-time schedulability test without involving any iteration.

\[
R_v = \ell_v^+ + \left[\frac{1}{m} \left(\sum_{v'} W_{v,v'}(D_v, D_{v'} + 1) - \ell_v^+ \right) \right]
\]

Polynomial Complexity
Augmentation Bound

In case of a task-set composed of a single DAG-Task \((N=1)\) we proved that

- Our test based on response-time analysis has
 - Augmentation bound \(< 3\) for G-EDF;
 - Augmentation bound \(< 5\) for G-DM.
Experimental Results

- The proposed schedulability tests have been evaluated by using *synthetic workload*.

- *libdag* – DAG-Tasks generator and schedulability test. *Soon publicly available online!*

- Comparison against the test based on augmentation bound proposed in V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese. “Feasibility analysis in the sporadic DAG task model”. In proc. of ECRTS 2013

 To the best of our knowledge it is the only test dealing with arbitrary deadlines
Experimental Results

Number N of external iterations in our algorithm

The test of Bonifaci et al. is based on a workload approximation up to an ϵ-error with $2^{-\delta}$
Experimental Results

Running times of the schedulability tests

<table>
<thead>
<tr>
<th></th>
<th>Min (s)</th>
<th>Max (s)</th>
<th>Avg (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTA(64)</td>
<td>0.001</td>
<td>0.397</td>
<td>0.014</td>
</tr>
<tr>
<td>RTA(16)</td>
<td>0.001</td>
<td>0.225</td>
<td>0.014</td>
</tr>
<tr>
<td>RTA(4)</td>
<td>0.001</td>
<td>0.050</td>
<td>0.009</td>
</tr>
<tr>
<td>RTA(1)</td>
<td>0.001</td>
<td>0.014</td>
<td>0.005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min (s)</th>
<th>Max (s)</th>
<th>Avg (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BON(10)</td>
<td>0.000</td>
<td>17.855</td>
<td>3.357</td>
</tr>
<tr>
<td>BON(6)</td>
<td>0.000</td>
<td>1.160</td>
<td>0.214</td>
</tr>
<tr>
<td>BON(4)</td>
<td>0.000</td>
<td>0.292</td>
<td>0.051</td>
</tr>
<tr>
<td>BON(2)</td>
<td>0.000</td>
<td>0.142</td>
<td>0.012</td>
</tr>
</tbody>
</table>

RTA test has running time lower of two orders of magnitude.

Exponential increase of the running time as the test precision increases.

(Intel Xeon @ 3.5 Ghz)
Experimental Results

Take-away messages

- RTA test outperforms the speed-up based test in all the tested configurations;
- In some cases our polynomial-time test performs better than the speed-up based test that has pseudo-polynomial complexity.
Conclusions

- We proposed a new **Response-Time Analysis** for the sporadic DAG-Task model under both G-EDF and G-DM scheduling;

- The analysis handles DAG-Tasks with **arbitrary deadline** and arbitrary utilization;

- Two schedulability tests have been derived (pseudo-polynomial and polynomial complexity);

- Extensive set of **experimental results** confirmed the effectiveness of the test.
Future Work

- More accurate characterization of the *interfering workload*;
- Support for *conditional* statements in the DAG-Task;
- Integration of *locking protocols* in the analysis;
- Handle *distributed* computations.
Thank you!

Alessandro Biondi
alessandro.biondi@sssup.it