Modelling Fault Dependencies when Execution Time Budgets are Exceeded

David Griffin, Benjamin Lesage, Iain Bate, Frank Soboczenski, Rob Davis
Introduction

• When we test out analyses, we make a lot of assumptions
 – We have representative data (Statistical methods)
 – A uniform distribution represents all possible inputs (Scheduling algorithms)

• Mostly, these assumptions are OK
 – Pragmatic assumptions which simplify our problems from impossible to doable
Introduction

• But what about this one?
 – Job Execution Times are Independent

• It's made in a lot of places
 – Testing scheduling, early versions of MBPTA

• Problem:
 – It is completely unrealistic
 Dependencies of Job Execution Times

- Regardless of any intelligent processor design, the job still performs a task
- Presumably, the inputs to the job effect what the job will do
- So if there are dependencies in Job inputs, there are also dependencies in Job execution times
- Is there any realistic system where Job inputs are I.I.D random variables?
Dependencies of Job Execution Times

- FFMPEG Decoding video frames under Valgrind
 - FFMPEG provides a lot of 'real world' data
 - Valgrind instruction counts give exact instrumentation
- Inputs – Video frame data, current decoder state
- Very good indicator of job execution time is previous job execution time
Dependencies of Job Failures

- Given that Job execution times are dependent, Job failures due to budget overruns are also dependent.
- Which means that they are definitely not I.I.D.
Is this a problem?

- Potentially – a lot of places make the assumption that execution times are independent.
- For example, mixed criticality systems – how do these fare if overall the low-crit failure rate is 10^{-4}, but all those failures happen one after the other?
- Not something that has been tested currently.
Problems

• Can't directly model failure durations

• Why?
 – Deadline overrun failures are rare events by definition
 – Won't get enough data

• Need to predict failure durations from data gathered in testing
Solution

- Forecasting

- Take data from normal case, generate a model, use model to predict behaviour under extreme circumstances
 - Works around scarcity of actual data
Solution (Part 2)

• How to do forecasting?
• For this case, using Model Extrapolation
• Given a set of models with the same structure, fit curves to the model parameters and extrapolate
• To get models, using Markov Chains and Lossy Compression
Markov Chain Models

- Set of states corresponding to duration of overruns
- Each state has probability to change to any other state
- Simply trained on test data
 - Other ways to generate models being explored
Compressed Markov Models

- Don't want to accept models which don't have enough data to back up each point
- Solution is to permit compressing the model
- Compression combines states/transitions which have a low amount of data behind each point
- Various methods of compression
Compressed Markov Models

Combine States

Combine Transitions
Compressed Markov Models

Combine States

Combine Transitions

One catch: Will want the user to tell us what intervals we're interested in
Forecasting

• Outline of method
 – Set multiple exceedance thresholds where there is sufficient data
 – Create models, using compression as needed
 – Find the most common shape of compressed model
 – Fit curves and extrapolate to the desired failure rate
Evaluation

• Method
• Get a large amount of data from target system
 – FFMPEG decoding videos under Valgrind
• Create a forecast model based on a subset of the data
 – Subset of data does not have enough data to reliably model at desired confidence levels
• Compare results from forecast model with what actually happened
Results
Results

10%, 7% produce reasonably accurate models
Results

5% has very low accuracy, but first 5% of input data is not representative

10%, 7% produce reasonably accurate models
DepET – A dependent execution time generator

- Have a way to generate exceedance durations at an arbitrary threshold
- DepET is an algorithm to utilise this to generate dependent execution times
- So as UUniFast generates a useful spread of realistic task utilisations, DepET generates realistic task execution times
DepET Algorithm

- Divide execution time into a series of bands
- Each invocation has a probability of exceeding its current band
- An exceedance model governs the duration of this exceedance
- Otherwise, randomly move about inside the band
DepET Evaluation

- Compared against SimSO ACET method and observations
- SimSO ACET method implemented as normal distribution with parameters derived from training data
- Useful comparison as it attempts to be realistic
- Note: Other methods of execution time generation are few in number, and may not be trying to be realistic to compare against
 - e.g. SimSO WCET method
DepET Overall Distribution

![DepET Overall Distribution](image-url)
DepET Overall Distribution

Both methods give a good overall fit
Evaluation - Overall Distribution

Both methods give a good overall fit

Although DepET has some inaccuracies due to compression
Evaluation - Dependencies

- **observed**
- **ACET**
- **DepET**
Evaluation - Dependencies

ACET has no dependencies
Evaluation - Dependencies

ACET has no dependencies

Observed and DepET have dependencies

In both, a good indicator of job execution time is previous job execution time
Conclusions

• Need to do better on dependencies between job execution times
 - Independence is not a realistic assumption

• Forecasting can be used to determine the expected duration of faults with reasonable accuracy

• Possible to use forecast models to generate dependent execution times using the new DepET algorithm
Any Questions?