
L
ill
e

S

R
T
N

20
15

Proceedings of the

9th Junior Researcher Workshop
on Real-Time Computing

JRWRTC 2015
http://rtns2015.lifl.fr/jrwrtc2015/

Lille, France

November 4-6, 2015

Centre de Recherche en Informatique,
Signal et Automatique de Lille

Message from the Workshop Chair

Welcome to the 9th Junior Researcher Workshop on Real-Time Computing,
held in conjunction with the 23rd International Conference on Real-Time
and Network Systems (RTNS) in Lille, November 2015. The workshop is
a platform for junior researchers to present their work, their incursion into
uncharted scientific territories, in a relaxed forum encouraging discussion
between members of the real-time community.
I would like to first thank the authors for their submission to the workshop.
Each has been reviewed and discussed by the members of the Program Com-
mittee, to which I express my gratitude for their dedication to the quality
of the selected papers and the workshop. Credit is also due to the Gen-
eral Chair of RTNS Julien Forget (Université de Lille, France), the local
committee, Clément Ballabriga, Antoine Bertout and Giuseppe Li-
pari (Université de Lille, France), and the program chairs, Liliana Cucu-
Grosjean (INRIA Rocquencourt, France) and Nathan Fisher (Wayne
State University, USA), for their help and support in organizing the work-
shop. I also tip my hat to Rob Davis (University of York, UK) and Se-
bastian Altmeyer (University of Luxembourg, Luxembourg) for their nu-
merous advices in the organisation of the event.
It is with immense delight that, on behalf of the Program Committee, I
wish you a pleasant workshop. May the presentations be enjoyable, the
posters enlightening, and the discussions fruitful.

Benjamin Lesage (University of York)

iii

Program Committee

Andreas Abel Saarland University, Germany
Alessandro Biondi Scuola Superiore Sant’Anna, Pisa, Italy
Sudipta Chattopadhyay Linköping University, Sweden
David Griffin University of York, UK
Zhishan Guo University of North Carolina at Chapel Hill, USA
Martijn van den Heuvel TU Eindhoven, The Netherlands
Benjamin Lesage University of York, UK
Martina Maggio Lund University, Sweden
Ernesto Massa State University of Bahia (UNEB), Brazil
Cristian Maxim Inria Paris, France
Mitra Nasri TU Kaiserslautern, Germany
Borislav Nikolic Polytechnic Institute of Porto, Portugal

iv

Table of Contents

Message from the Workshop Chair . iii

Failure tolerance for a multicore real-time system scheduled by PD2 1

Yves Marcellin Mouafo Tchinda, Annie Geniet-Choquet and Gaëlle Largeteau-Skapin

Discussion on the Spectral Analysis of Real-Time Multi-Path Tasks 5

Fabrice Guet, Luca Santinelli and Jérôme Morio

Scheduling of parallel applications on many-core architectures with caches: bridging
the gap between WCET analysis and schedulability analysis . 9

Viet Anh Nguyen, Isabelle Puaut and Damien Hardy

A Comparative Study of the Precision of Stack Cache Occupancy Analyses 13

Amine Naji and Florian Brandner

ASLA: Adaptive System Level in AUTOSAR . 17

Amel Belaggoun, Ansgar Radermacher and Valerie Issarny

Towards Utilizing Reconfigurable Shared Resources in Multi-Core Hard Real-Time
Systems . 21

Luca Pezzarossa, Martin Schoeberl and Jens Sparsø

Regulation versus Flow Control in NoC for Hard Real-time Systems: a Preliminary
Case Study . 25

Hamdi Ayed, Jean-Luc Scharbarg, Jérôme Ermont and Christian Fraboul

v

Failure tolerance for a multicore real-time system
scheduled by PD2

Yves MOUAFO
LIAS-ENSMA

Teleport 2, 1 av. clément Ader
BP 40109,86961

Futuroscope-Chasseneuil
yves.mouafo@ensma.fr

Annie GENIET
LIAS-ENSMA

Teleport 2, 1 av. clément Ader
BP 40109, 86961

Futuroscope-Chasseneuil
annie.geniet@ensma.fr

Gaëlle LARGETEAU
SXlim-SIC, Univ. Poitiers

BP 30179, 86962
Futuroscope-Chasseneuil
glargeteau@sic.univ-

poitiers.fr

ABSTRACT
This work addresses the problem of failure tolerance for real-
time applications, running on a multicore hardware architec-
ture. In fact, at any time during the scheduling process, a
problem may occur on any of the processor cores, affect-
ing the task that was running on it. We focus on systems
composed of periodic independent tasks with simultaneous
first release and implicit deadlines. The system is scheduled
under the fair algorithm PD2.

Our approach is based on limited hardware redundancy:
the system will run on a processor with one more core than
required. Then we prove that, if the subtask running on
the faulty core is not rescheduled, the application can keep
running on the remaining cores without temporal or fairness
faults. Moreover, a strategy of restriction and relaxation
of tasks deadlines is proposed to ensure the validity and
fairness in case of re-execution of the subtask.

General Terms
Real-time systems, Pfair scheduling, Fault tolerance, limited
redundancy, PD2 algorithm

Keywords
Scheduling, failure, redundancy

1. INTRODUCTION
With the introduction of multicore system-on-a-chip ar-

chitectures for embedded systems, failure tolerance is bound
to become a major aspect in application design. In fact, it
is well-known [1] that technology scaling exposes electronic
devices to external disturbs. The overall effect is a proba-
bility that a core of the processor fails during the execution
of the application. In this paper, we focus on permanent
failures and adopt the classical modeling of a real-time ap-
plication [2] which consists of a set of n independent periodic
tasks τ = {τ1, τ2, ..., τn}. Each task τi is submitted to hard
temporal constraints and characterized by four temporal pa-
rameters: the first release date or offset ri, the worst-case
execution time (WCET) Ci, the period Ti and the relative
deadline Di. Each task τ consists of an infinite set of in-
stances (or jobs). An important characteristic of the task τi
is its utilization Ui = Ci

Ti
. For any system of tasks τ , we de-

note U =
∑n

i=1(Ci/Ti) the load of the system. We assume
that the temporal parameters are known and deterministic,
the tasks have simultaneous first releases (ri = 0) and im-

plicit deadlines (Di = Ti).Thus, we denote a task τi with a
WCET Ci and a period Ti by τi < Ci, Ti >. The system is
scheduled under the Pfair algorithm PD2 [3]. Under these
assumptions, a necessary and sufficient condition for feasi-
bility is: U ≤ m [4] (m denotes the number of processor
cores) and PD2 is optimal.

The construction of a PFair scheduling involves dividing
each task τi into unitary subtasks. Each subtask τ ji (j ≥ 0)

has a pseudo-release date rji = b j
Ui
c and a pseudo-deadline

dji = d j + 1

Ui
e. The interval [rji , dji) represents the feasability

window of the subtask τ ji . Subtasks are scheduled in increas-
ing pseudo-deadline order and when the pseudo-deadlines
are equal, PD2 uses two additional criterias to determine
the priority order between subtasks.

At any time during the scheduling process, a failure may
occur on any of the cores, affecting or not a task. It becomes
necessary to reorganize the system so that the system keeps
on running on the remaining cores without temporal or fair-
ness failures. To provide a protection against a permanent
failure, we propose an approach based on limited hardware
redundancy, where only one core is added to those requiered.
Thus, we prove that, using a fair algorithm such as PD2, if
the affected subtask is not rescheduled, limited redundancy
guarantees the validity and the fairness of scheduling despite
the defection of one core. Moreover, a strategy of rectric-
tion and relaxation of tasks deadlines is proposed to ensure
validity and fairness in case of re-execution of the sutask.

The remainder of this paper is organized in four sections.
In the next section (Section 2) a state of the art is intro-
duced. Then our modeling of a failure is proposed, and
the limited redundancy approach is presented (section 3).
Finally, we present our results to ensure failure tolerance
when the re-execution of affected subtask is not necessary
(section 4) and when it is (section 5).

2. STATE OF ART
The classical way to provide failure tolerance on multi-

core platforms (which are generalized by multiprocessors)
is to use time and/or space redundancy. Time redundancy
can only protect systems against transient faults. However,
space redundancy is useful for transient and permanent fail-
ures. The idea is to introduce redundant copies of the el-
ements to be protected (processor or other components),
and exploit them in the case of a fault. Authors who have
dealt with fault tolerance in multiprocessor architectures [5]

1

[6] prefer to use the primary backup technique where each
task has a primary copy and a backup copy. Both copies
are scheduled. The backup is only activated when the pri-
mary has failed. This technique has drawbacks, due to the
increase of the number of processors, induced by the dupli-
cation of tasks. Other authors [7] advocates the removal of
some tasks after the failure to maintain a tolerable system
load. However, this causes a decrease of system function-
ality. The number of processors used to implement space
redundancy is determinant for the energy consumption of
the processor and thus has an environnemental impact.

Our approach aims to minimize the number of redundant
processors while maintaining the full functionality of the ap-
plication despite the failure. Therefore, we use only one ad-
ditional processor and no deletion of task is envisaged. Only
the lost subtask might be re-executed. Instead of using the
extra core only after the failure (which will be solved by re-
placing the damaged core by the backup one), we consider
that it is used at the begining. This assumption will be nec-
essary in case of re-execution of the lost subtask(s) and thus,
we want to study the scheduling behavior in such context.

3. FAILURE MODELING AND TOLERANCE
APPROACH

3.1 Failure model
We consider that while the application is running, one core

of the processor failed. Moreover, the failure is permanent
and affects only one subtask: the one that is running on the
core which suffers the failure. All or part of this subtask
will have to be re-executed. In [8], S. Malo distinguishes
two possible scenarios:
- The failure occurs immediately after the context switch.
In this case, the application should simply continue execu-
tion on the remaining cores. We only have to verify that the
reorganization is possible and does not cause a task to miss
it deadline;
- The failure occurs during the execution of a task. In this
case, three policies are possible: (1) Re-execution of what
has been executed since the last backup of the context; (2)
The full task is re-executed; (3) The current subtask is sim-
ply abandoned and execution continues on the remaining
cores.

Therefore it is necessary to distinguish the case where the
re-execution of task is required (tolerant scheduling with re-
execution) and the case where it isn’t (tolerant scheduling
without re-execution). Figure 1 gives an illustration of the
scenarios and draws the outline of the context of our con-
tribution. First, we focus on tolerant scheduling without re-
execution which means that no subtask is affected or that
possibly affected subtask is abandoned. We must ensure
that the application can be keep on running without tempo-
ral faults. Then, the case of the re-execution of the affected
subtask is discussed in the last section of this paper.

3.2 Limited redundancy approach
Let S be a system of tasks. In the introduction it was

established that S is schedulable if and only if U ≤ m.
To overcome a failure of a core, limited hardware redun-
dancy is a method which consists in providing an additional
core: instead of running S on m cores, it will run on m+ 1
cores. Thus, when the failure occurs, the system will remain
schedulable on the m remaining cores.

Figure 1: Failure model

Let τ be the system of tasks defined by
τ = (τ1 < 2, 3 >, τ2 < 2, 6 >, τ3 < 3, 8 >, τ4 < 6, 8 >, τ5 <
5, 12 >). The load U = 2.54 < 3, thus τ is schedulable on a
3 cores processor.

Figure 2 illustrates the use of limited redundancy to build
a tolerant scheduling of the system τ . A failure occurred on
the CPU core 1 at time 6 affecting the subtask τ41 .

Figure 2: Example of scheduling with limited redun-
dancy method

3.3 Experimentation
A software prototype FTA (Fault Tolerance Analyser) is

designed to simulate scheduling with fault by Pfair algo-
rithms. To get concluding results about our approach, a to-
tal of 550 random systems with various proportions of heavy
task (i.e Ui ≥ 0.5) has been generated and submitted to the
simulation. The fault occurrence time and the failing core
of the processor are randomly chosen and vary from one
system to another. The experiment was repeated 50 times
on the 550 generated systems. The obtained results show
that, no matter the time the failure occurs or the affected
core, no matter the system load or the number of heavy
tasks (Ui ≥ 0.5), scheduling with fault without reexecution
guarantees the respect of validity and fairness constraints.

In the following section, we establish the proof of this
result.

4. SCHEDULING WITHOUT REEXECUTION
In this section, we prove that the limited redundancy ap-

proach guarantees the validity and the fairness of a tolerant
scheduling without re-execution. We introduce the nota-
tions and the lemmas needed. The idea of the proof is based

2

on the observation that tasks are scheduled earlier on m+1
cores with failure than on m core without failure (see lemma
2).

4.1 Notations and Assumptions
Notations:

Schedm: PD2-schedule on a m cores architecture, called m-
schedule;
Sched(m+1)→m: PD2-schedule on an architecture with m+1
functional cores initially, and m cores after a failure, called
reorganized-schedule;
Schedm(ti...tj) : part of the schedule Schedm from time ti
to the time tj .
Cm(t):List of pending subtasks at time t in Schedm;
Cu(t):List of subtasks released at time t;
Ce

m(t):List of the subtasks scheduled at time t in Schedm;
Cr

m(t):List of the pending subtasks which are not scheduled
at time t in Schedm;
t(τ ji , Sched):Date by which the subtask τ ji is executed in
Sched;
tp: Failure time;
Assumptions:
U ≤ m thus Schedm and Schedm+1 are valid and fair.

4.2 Lemmas of interest
Two lemmas are needed to demonstrate our result. For

space reason, we state the two lemmas but provide a sketch
of proof only for Lemma 2.

Lemma 1: At any time t, the list of the pending
subtasks in the reorganized-schedule is included in
the list of the pending subtasks in the m-schedule.

C(m+1)→m(t) ⊆ Cm(t)

This come from the fact that there are more tasks exe-
cuted on m+1 cores than on m cores.

Lemma 2:Any subtask is scheduled earlier in the
reorganized schedule than in m-schedule.

∀τ ji , t(τ ji , Sched(m+1)→m) ≤ t(τ ji , Schedm)

Proof. Let τ ji be a subtask. At any time t,

if τ ji ∈ Ce
(m+1)→m(t) then τ ji ∈ C(m+1)→m(t).

In fact, if a subtask is scheduled, then it was pending.
According the Lemma 1,
C(m+1)→m(t) ⊆ Cm(t), therefore, τ ji ∈ Cm(t).
Since at time t a pending subtask is either scheduled or not,
we have Cm(t) = Ce

m(t) ∪ Cr
m(t).

Two cases to consider:
First case: τ ji ∈ Ce

(m+1)→m(t) and τ ji ∈ Ce
m(t).

i.e at time t, τ ji is scheduled in the reorganized schedule and

is scheduled in the m-schedule. Then, τ ji is scheduled at
time t in both schedules:
t(τ ji , Sched

(m+1)→m) = t(τ ji , Sched
m) = t

Second case: τ ji ∈ Ce
(m+1)→m(t) and τ ji ∈ Cr

m(t).

i.e at time t, τ ji is scheduled in the reorganized-schedule but

is not scheduled in the m-schedule. In this case, τ ji will be
scheduled later in in the m-schedule.
Thus, t(τ ji , Sched

(m+1)→m) = t and t(τ ji , Sched
m) > t

and then t(τ ji , Sched
(m+1)→m) ≤ t(τ ji , Schedm.

4.3 Validity and fairness proof
Our main result is given by Theorem 1 below.

Theorem 1. Any system τ = (τ1 < C1, T1 >, τ2 <
C2, T2 >, ..., τn < Cn, Tn >) which consists of n peri-
odic and independent tasks, with simultaneous first
releases and implicit deadlines feasible under the fair
algorithm PD2 on a m cores processor and running
on m+ 1 cores, remains feasible on m cores, after the
failure of one of the cores without rescheduling the
impacted subtask.

In other words, the reorganized schedule Sched(m+1)→m is
valid and fair. i.e ∀τ ji , rji ≤ t(τ ji , Sched(m+1)→m) < dji .

Proof. Let τ ji be a sub-task.

If t(τ ji , Sched
(m+1)→m) < tp then t(τ ji , Sched

(m+1)→m) =

t(τ ji , Sched
(m+1)), because before the failure, the reorganized-

schedule and the (m+1)-schedule are the same.
Since Schedm+1 is valid and fair according to the assump-
tions, we have
rji ≤ t(τ ji , Sched(m+1)→m) < dji .

Otherwise t(τ ji , Sched
(m+1)→m) ≥ tp:

- The algorithm PD2 can schedule subtasks only if they are
pending and so, after their pseudo-release date. Therefore,
∀τ ji , rji ≤ t(τ ji , Sched(m+1)→m);
- To prove the second inequality, let us reason by contradic-
tion. Suppose that dji ≤ t(τ ji , Sched(m+1)→m).

According to Lemma 3, t(τ ji , Sched
(m+1)→m) 6 t(τ ji , Sched

m).

We would then have dji ≤ t(τ ji , Sched
m). i.e τ ji misses its

pseudo-deadline and thus, Schedm would not be fair. That
is contrary to our initial assumptions (see 4.1).

Conclusion: ∀τ ji , rji ≤ t(τ ji , Sched(m+1)→m) < dji

5. SCHEDULING WITH RE-EXECUTION
To take into account the re-execution of the affected sub-

task, we introduce the ”constrain and release”approach; cou-
pled with limited redundancy, it may ensure tolerance. For
the implementation, two methods for calculating the tasks
deadlines are considered and an experiment is made. We
assume, as a first step, that there is a mechanism which de-
tects and locates the affected core [9] during the slot after
its occurrence. Therefore only the lost time unit has to be
resumed.

5.1 Constrain and release approach
This method consists in starting to scheduling the ap-

plication on a system of tasks with constrained deadlines,
and in releasing the deadlines after failure. Thus the exe-
cution begins with smaller feasability windows that will be
expanded after the failure. Time margin that is created be-
tween deadline and period of a task can be exploited as a
tolerance window to possibly re-execute a subtask. Figure
3 illustrates this approach. We build from the starting sys-
tem (S) (schedulable on m cores), a system with constrained
deadlines (S’) that runs on m+1 cores. When the failure oc-
curs, the impacted subtask is re-executed in the tolerance
window and deadlines are released. We obtain a system S”
which continues running on the remaining m cores.

The problem is here to determine how to compute the
constrained deadlines, and next how to reconfigure the failed
system. In the following paragraphs, we propose some ideas.

3

Figure 3: Restriction and relaxation approach

5.2 Deadlines calculation
Two approaches are possible. The first consists in exploit-

ing the idle time units of the schedule. Those time units are
distributed equally between all instances of all tasks. The
proportion of time units allocated to an instance is derived
from its period [10].
The second method consists in simulating the addition to
each task of a further subtask which represents the re-execution
of an affected subtask. The deadline of the task corresponds
to the last but one subtask pseudo-deadline.

5.3 Reconfiguration protocol
When a failure occurs at time tp, it affects a subtask τ

′j0
i0

that belongs to the instance k0 = b j0
Ci0
c of the task τi0 .

Constrained deadlines in the system S’ must be released for
the remainder of the schedule and the failing subtask must

be re-executed. Let denote by r
′j
i and d

′j
i respectively the

pseudo-release date and the pseudo-deadline of a subtask τ
′j
i

in the running constrained system S’. rji and dji are these set-

tings for the corresponding subtask τ ji in the initial system
with implicit deadlines. The reconfiguration happens as fol-
lows:
- For the subtasks of non-affected tasks τ ′i(i 6= i0):

back to initial settings for non-yet executed instances

(r
′j
i ,d

′j
i) 7−→ (rji ,dji) , i 6= i0

-For the subtasks of the affected task τ ′i0 :

keep the settings for the current instance

j0 < j < k0Ci0 =⇒ (r
′j
i0

,d
′j
i0

) 7−→ (r
′j
i0

,d
′j
i0

);

back to initial settings for next instances

j ≥ k0.Ci0 =⇒ (r
′j
i0

,d
′j
i0

) 7−→ (rji0 ,dji0);

re-execute the affected subtask τ j0i0 in the tolerance
windows:

(r
′j0
i0

,d
′j0
i0

) 7−→ (D′
i0 ,Ti0).

5.4 Experimental results
The experimental study, which focused on the same sys-

tems than the approach without re-execution (see section
3.3) provided promising results (see Figure 4): whatever the
time of the failure, the affected core or the affected task, with
the deadlines calculated by the second method, the fairness
and the validity of the scheduling seems to be guaranteed.
This is also true for most cases with deadlines calculated
by the first method. However there are marginal invalid
systems that need further extensive study.

Figure 4: Experimental results

6. CONCLUSION AND PERSPECTIVES
In this paper, we proposed the limited hardware redun-

dancy approach to protect a real-time system against a per-
manent failure of one core. We proved that this approach
guarantees validity and fairness of a schedule with failure
without re-execution.

When re-execution is necessary, we proposed to constrain
the deadlines of tasks before failure and to release them af-
ter. This method provided us promising results that we plan
to demonstrate in future work. Moreover, we will study the
case where re-execution of several subtasks is necessary. We
will finally try to determine the maximum tolerable delay
between the occurrence of a failure and its detection.

7. REFERENCES
[1] M. Baleani, A. Ferrari, L. Mangeruca, A.

Sangiovanni-Vincentelli,M. Peri, and S. Pezzini,
Fault-tolerant platforms for automotive safety-critical
applications. In Proceedings of the 2003 international
conference on Compilers, Architecture and Synthesis
for Embedded Systems , pages 170 to 177, 2003.

[2] A. Choquet-Geniet, S. Malo, Scheduling an aperiodic
flow within a real time system using Fairness properties
ARIMA Journal, vol. 18, pp. 93 to 116, 2014.

[3] J. Anderson, A. Srinivasan, A New Look at Pfair
Priorities Rap. tech.TR00 023, University of North
Carolina at Chapel Hil , sept. 1999

[4] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A.
Varvel, Proportionate progress: A notion of fairness in
resource allocation. Algorithmica 15, p.600 to 625,1996

[5] A. Bertossi, L. Mancini, A. Menapace, Fault-Tolerant
Rate-Monotonic first-fit scheduling in hard real-time
systems. IEEE Transactions on parallel and distributed
systems 10,9 (sept 1999) 934-935.

[6] S. Ghosh, R. Melhem, D. Mosse Fault-tolerance
through scheduling of aperiodic tasks in hard real-time
multiprocessor systems. IEEE Transactions on parallel
and distributed systems 8,3 (march 1997) 272-283.

[7] T. Megel, Placement, ordonnancement et mécanismes
de migration de tâches temps-réel pour des
architectures distribuées multicoeurs. Thèse de doctorat
de l’université de Toulouse, avril 2012.

[8] S. Malo, Contribution à l’ordonnançabilité des
applications temps-réel multiprocesseurs. Thèse de
doctorat de l’Ecole Nationale Supérieure de Mécanique
et d’Aérotechnique,décembre 2010.

[9] E. Chanthery, Y. Pencole, Modélisation et intégration
du diagnostic actif dans une architecture embarquée
Dans Journal Européen des Systèmes Automatisés,
MSR 2009, pages 789 to 803, 2009.

[10] Y. Mouafo, A. Geniet-Choquet, G. Largeteau-Skapin
Robustesse des applications temps-réels multicoeurs
Actes de l’école d’été temps-réel 2015, pg 143-146.

4

Discussion on the Spectral Analysis of Real-Time Multi-Path
Tasks

Fabrice Guet, Luca Santinelli and Jérôme Morio
ONERA Toulouse - The French Aerospace Lab, Toulouse

{fabrice.guet|luca.santinelli|jerome.morio}@onera.fr

ABSTRACT
The Worst-Case Execution Time (WCET) is applied to guar-
antee the safety critical real-time systems. The increasing com-
plexity of todays real-time systems requires new approaches for
evaluating the WCET of a task. Measurement Based Proba-
bilistic Timing Analysis provides safe probabilistic WCET with
the Extreme Value Theory (EVT). The theoretical applicability
of the EVT relies on assumptions that has to be verified. The
spectral analysis of multi-path task proposed in this paper aims
at defining the task timing behavior and deducing its worst-case
execution path. It gives also measurement guidelines to ensure
the EVT applicability in the complex case of multi-path tasks.

1. INTRODUCTION
The safety of real-time system relies on hard timing con-

straints that have to be respected at every system execution [4].
System predictability is achieved by determining the Worst-
Case Execution Time (WCET) of each task that depends on
their implementation and the hardware architecture that runs
the task. It is the schedulability analysis that guarantees timing
constraints by verifying execution requirements of each task by
making use of their timing evaluation.

The new functionalities that are offered by multi-core micro-
processors e.g., cache memories, pipelines and so on, increase the
complexity of the Critical Real-Time Systems. While they en-
able relevant gains in terms of average performances e.g., energy
consumption and timing computation, it becomes hard to guar-
antee the worst-case performances of such architectures. Deter-
mining every state of the system is quite impossible, moreover
for the same execution condition the task execution time could
be variable due to different interferences happening [12].

Todays systems complexity makes harder to produce WCET
estimates through Static Timing Analyses [15], endangering the
reliability of static models and impacting estimates confidence [2].
Alternative to deterministic approaches, probabilistic ones tend
to emerge from the requirements of the DO-178-B certification
levels in aeronautics which corresponds to probabilistic levels.
Contrary to deterministic approaches, probabilistic approaches
provide probabilistic Worst-Case Execution Time (pWCET) es-
timates1.

In particular, measurement based analysis applies the Ex-
treme Value Theory (EVT) [7] for modeling extreme events such
as extreme execution times in order to derive pWCETs. From
system performance measurements, in this case execution times,
the EVT provides pWCETs with negligible cost by reducing the
analysis effort, because it does not require any system model.

1pWCETs are alternative to deterministic Worst-Case Execu-
tion Times as probabilistic distributions with multiple execution
times, each with a probability of happening.

Limitation is the proof of the EVT theoretical applicability and
so the reliability of the pWCET estimates [10, 14]. As most
of statistical models, the EVT requires independent and iden-
tically distributed (i.i.d.) measurements to produce pWCETs
that is quite difficult to assume in practical problems as those
including real-time computing systems.

Current researches focus on the independence problem of the
measurements by introducing system randomness e.g., imple-
menting random replacement policies in cache memories. On
the one hand, this randomization may be regarded as harmful
for real-time system safety [13] and on the other hand, strict in-
dependence is not required regarding mathematical conditions
to consider the EVT [6].

Considering the timing behavior of a real-time task as a pro-
cess, EVT conditions are applicable for stationary processes i.e.
processes which follow the same probabilistic law. Spectral anal-
ysis in signal processing enables to stress the underlying law of
the process in presence of noise and could be suitable to ensure
the applicability of the EVT. The application of the spectral
analysis aims at proving stationarity in the case of tasks with
multiple control flow instructions defining multi-path tasks, by
identifying the laws composing the task.

Contributions.
In this paper we focus on the measurement based probabilistic

analyses and especially on the stationarity aspect for guarantee-
ing the EVT applicability for the WCET problem, especially for
multi-path tasks [5]. The analysis particularly stresses software
control flows that drive non stationarities in the statistical ana-
lyis of real-time tasks. We face non time-randomized systems
and multi-path tasks with their challenges for the EVT appli-
cation.

Outline.
In section 2, we introduce stationarity analysis concepts with

a possible interpretation for real-time computing systems. In
section 3, we introduce a framework for the spectral analysis of
real-time tasks and a method to compose the spectral analysis
of different tasks. In section 4, we make use of the introduced
notions in a case study.

2. A STATIONARITY ANALYSIS FOR REAL-
TIME COMPUTING SYSTEMS

Execution time measurements Ci are collected according to
end-to-end measurements of a task at discrete instant times
i ∈ [[1;N]], with N the number of execution time measure-
ments. The collection of measurements is a trace T of length
N defined as the sequence of execution time measurements:
T = (Ci)i∈[[1;N]]. From T , it exists a finite number of different
possible execution times C(k) and the upper-ordered sequence of

5

execution times T ↑ is the sequence of the n different execution
times such that C(1) < . . . < C(n).

Randomness that occurs in modern multi-core microproces-
sors recorded in measurements motivates the definition of a ran-
dom variable for representing the task execution time.

Definition 1 (Execution Time Profile C). Given a trace
T , the Execution Time Profile (ETP) C is the discrete random
variable defined on the finite number n of possible execution
times C(k) and we denote Ω = (C(k))k∈[[1;n]] the set of the dif-
ferent execution times.

The ETP is usually depicted with the Empirical Density Func-
tion or histogram of T as the discrete function pC associating
an execution time C(k) in Ω to its probability density pk:

pC(C(k)) = pk
def
=

1

N

∑

i≤N

1Ci=C(k)
. (1)

Probability

Execution
time
C

Theoretical distribution

C(1) WCETC(n)

Upper
timing
bound

Set of mea-
surements

Safety

Tightness

Figure 1: Overview of the WCET problem. Example
of a timing probabilistic profile of a task.

While the true task Execution Time Profile should follow a
complete theoretical distribution like in Figure 1, the Empirical
Density Function is only defined on the set of execution time
measurements smaller than the theoretical set of possible exe-
cution times due to the difficulty to observe extreme execution
times i.e. before C(1) and after C(n).

If there is no obvious reason to assume i.i.d. measurements,
one has to consider stationary measurements in order to apply
the EVT [6]. In particular, for i.i.d. or stationary weakly de-
pendent measurements whose average probabilistic law has a
tail which tends slowly to zero, then the EVT applicability is
ensured. Within the scope of non time-randomized hardware
architectures, independence is quite hard to assume because
of past states in memory units [10] whereas the hypothesis of
weakly dependent stationary measurements is more realistic.
Hence, we investigate the stationarity in real-time computing
systems.

Definition 2 (Strictly Stationary Trace). A trace T =
(C1, C2, . . .) is a strictly stationary trace if for all j, k, l, the set
of execution times Cj , . . . , Cj+k has the same probabilistic law
as the set Cl+j , . . . , Cl+j+k.

Given a trace, if Definition 2 is verified, then there is strong
evidence that measurements are identically distributed (i.d.)
from the same probabilistic law (e.g., Gaussian, Gumbel, Weibull
etc). Since in practice the law is not known there is no chance
to prove the i.d. hypothesis so that we consider stationarity in-
stead.

Evidences of non stationarities in real-time computing sys-
tems may be

Deterministic trends: the execution time evolves according
to a function over the time e.g., a for loop whose upper-
bound evolves deterministically over the time.

Random walks: this case may not happen because the cur-
rent measure cannot be a sum of the preceding one and a
random one.

Seasonalities: in multi-path programs, one path is executed
(one probabilistic law) during an amount of time then an-
other one and so on.

Stationarity is essential in statistical analyses but it is a usu-
ally assumed hypothesis in a very wide range of applications.
The problem is even more diffcult because there is no prac-
tical definition and it sometimes relies on subjective analyses
[11]. That is why we consider a statistical metric to evaluate
the trace stationarity which are the Kwiatowski Philips Schmidt
Shin (KPSS) test [9].

In the real-time computing system domain such non stationar-
ities exposed above could be controlled with measurement rules
given by the following spectral analysis.

3. A SPECTRAL ANALYSIS OF MULTI-PATH
TASKS

In the case of the multi-path task is known, we intend to
provide stationarity. Let us consider τ , a multi-path task and
whose paths are denoted πi with i ∈ [[1; Π]], Π the number of
paths in τ . For one executed path πi, a set of possible execution
times Ωi cannot be observed. As a consequence, for all possible
execution time C ∈ Ωi, the probability to observe C knowing
that the path πi is executed is P (C|πi) = 0. Thus, execution

times in Ωi do not follow the same probabilistic law as those in
Ωi and so are not identically distributed.

With Definition 2, stationarity would be achieved if measure-
ments are collected for one executed path. ∀i ∈ [[1; Π]], the
execution time of τi may be seen as a natural frequency of τ .
Consequently, τ ’s timing behavior could be the sum of its nat-
ural frequencies, as in signal theory. Consequently, a complete
temporal representation of multi-path tasks is required to en-
sure the investigation of every path for the WCET problem:

Definition 3 (Task Spectral Representation (TSR)).
We consider a task τ whose paths are denoted τi, ∀i ∈ [[1; Π],
where Π is the number of paths. ∀i ∈ [[1; Π]], we denote Ωi the
set of possible execution times that can take τi. The Task Spec-
tral Representation of τ is a function of the continuous time
t ∈ R+:

|τ |(t) =
1

Π

Π∑

i=1

δi(t), (2)

with δi the Dirac function that equals to 1 if t = Ti, where Ti is
a natural frequency of τ and 0 otherwise.

The natural frequencies of a task, as defined in signal theory,
are either known or deduced from experiments as the execution
time that each path takes the most to complete.

For instance, for τ running on a fully deterministic single-
core microcontroller, if every path of τ is executed then ∀i ∈
[[1; Π]], card(Ωi) = 1 and Ωi = {Ti}, Ti a natural frequency,
so the ETP is equal to the TSR of τ . In this case, the TSR
is a complete timing representation of τ . However, for a low
deterministic tightly coupled multi-core microprocessor, ∀i ∈
[[1; Π]], card(Ωi) > 1 and so the ETP is different from the spec-
tral representation of τ .

The spectral analysis of software tasks is a formalism to have
an overview of the timing behavior of the task and manage to
collect stationary execution time measurements.

6

BB1start

τ1 BB2

BB3

Figure 2: Task τ ’s graphical representation.

TSR Composability.
To ease the worst-case path research, one would like to com-

pose TSRs of known inner tasks included in a task that is
the only scheduled. For instance, given a (Π1 + 1)-path task
τ , that executes either the known Π1-path task τ1 or a basic
block (sequences of instructions that have no control flow in-
structions) (BB) [3] like in Figure 2, then the TSR |τ |(t) =
|τ1|(t − ∆t) + δ2(t). The dependent relationship beween BB1,
τ1 and BB3 leads to the temporal translation of the TSR τ1 of
∆t which is the duration of BBs 1 and 3.

Property 1 (TSR Composability). Considering a multi-
path task τ composed of 2 inner tasks Π1-path task τ1 and a
Π2-path task τ2 whose TSRs are known then the TSR |τ | is

• |τ1|+ |τ2| for independent inner tasks,

• |τ1| ◦ |τ2| = 1
Π1+Π2

∑Π1
i=1

∑Π2
j=1 δ1i(t − T2j) for dependent

inner tasks, where T2j is such that δ2j (T2j) = 1, the nat-
ural frequencies of τ2.

Remark 1. ◦ is the convolution operator and is symmetric.

Knowing all TSRs that compose the global task, we deduce
analytically the worst-case path by composing all the worst-case
paths of every inner tasks. Using the TSR enables to have an
overview of the timing behavior of the task to deduce faster
the pWCET with the EVT and also guaranteeing stationary
measurements for applying the EVT.

Application of the TSR is presented next for the ns case study
from the Mälardelen benchmarks [1].

4. THE NS CASE STUDY
The ns WCET benchmark task searches a key in a 4-dimensional

array of 5 elements each. It is a linear search through the array
so depending on the key to search there are as many paths as the
number of elements in the array. We only consider the farthest
element of the last dimension, which makes 4 different paths
((5− 1)× 53) each with significant different number of instruc-
tions which allows to better visualize the natural frequencies of
ns. Thus, the ns TSR is

|ns|(t) =
1

4

4∑

i=1

δi(t) (3)

where ∀i ∈ [[1; 4]], δi is also defined by its respective ns input
IN which is the key KEYi to search. Thus we define, ∀i ∈
[[1; 4]], IN(δi) = KEYi where KEYi is the farthest key in the
farthest dimension of the ith element of the first dimension.

Knowing that every path has the same length it is also pos-
sible to define |ns| with the composability (Property 1):

|ns|(t) =
1

4
[δ1(t) + δ1(t−∆t) + δ1(t− 2∆t) + δ1(t− 3∆t)] ,

(4)
where δ1 is the timing function of the first path and ∆t the time
spent to explore once three dimensions.

Hardware Platform.
The platform running the task has two Intel R©Xeon R©E5620

2.4 GHz sockets, each one with four cores and three levels of
cache. The first two levels (L1 and L2) are private to each core,
while the last level (LLC, equivalently L3) is shared to the cores
belonging to the same socket.

Execution Conditions.
The task is running periodically in isolation on one core i.e.

there is no other task running on the core and no interrupt (Irq).
To guarantee the real-time task execution, we set its scheduling
policy to the Linux SCHED FIFO policy. The task is executed
under different conditions:

• One input: the same input for all instant time.

• Random inputs: the key is randomly modified at each
instant time.

• Periodic inputs (100 and 200 iterations case): the key is
randomly modified every 100/200 instant times.

Those execution conditions may not be realistic in practice, they
stress specific conditions that may be exerced for timing analysis
purposes.

Results.
We now present the results of the experiments with remarks

about stationarity.

●●●●●●
●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●

●
●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●
●●
●●●●
●
●●●●●●●●●●

●

●
●

●

●●
●●●●●
●●●●
●
●●●●●
●
●●●●●

●●

●

●
●●●
●

●●●●●●●●●●●●●●●●●●
●
●●●

●

●

●

●●●●●●●●

●

●
●●●●●●●●●

●

●●

●

●●●●●●●●●●

●

●

●●●●●●
●
●●●●●●●●
●●●●●●●
●
●●●

●

●

●●●●●●●●

●
●

●

●●●

●

●●●●●●●●●●●
●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●

●
●

●

●●
●●
●

●

●●●●●●●
●
●●●●●
●

●

●●●●●●●●
●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●

●●●●●●●●
●●●●●●

●

●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●

●

●●●●●●
●
●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●
●●

●

●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●

●●●●●●●●
●
●●●●●●●●●
●
●●●●

●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●

●
●

●

●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●

●
●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●

●●

●

●●●●●●●●●●●●●●●●●●
●
●●●●●●●●

●

●●●●●●
●
●●●●●●●●●●●●●●●

●
●●●●●

●

●●●●●●●●●
●
●●●●●
●●●●●

●

●●●●
●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●

●

●●●●●●●●●
●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●

●
●●●●●
●●●●
●
●●●●●
●
●●●●●●●●●●●●●●●

●
●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●

●●●●●

●

●●●●●

●

●

●●●

●

●●
●●●●●●●●●●●●●●●

●
●●●●●●●●●

●

●●●●●
●

0 200 400 600 800 1000

14
00

0
18

00
0

22
00

0

Instant time

E
xe

cu
tio

n
T

im
e

(a) One input

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●●●

●

●

●●●

●●

●●●

●

●●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●
●

●

●●

●●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●●

●

●

●

●●

●

●●

●

●

●

●●●

●●

●

●●●

●●

●

●●

●●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●●

●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●●●

●

●

●●

●●

●

●

●●●

●

●

●

●●

●

●●

●●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●●

●

●

●●●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●●

●

●●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●●

●

●

●

●

●

●●

●

●●

●●●

●

●

●

●

●●

●

●●●●

●●

●

●●●

●●

●●

●

●●

●●

●

●

●

●

●●

●

●

●●

●●●

●●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●●

●

●●●

●●

●

●

●

●

●

●●

●●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●

●●

●

●

●●●●●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

0 200 400 600 800 1000

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

Instant time

E
xe

cu
tio

n
T

im
e

(b) Random inputs

●●
●
●●●●

●●
●●●
●

●●●●●
●●●●●●●
●●
●

●

●●●●●
●●●●●●●●●
●
●

●●●

●

●●●●●●●●
●●●
●

●●●●●
●●●●●●●
●
●●
●
●●●●●
●
●●●●●●●
●
●

●

●●●●●
●

●
●●●●●●●●
●
●●●●●
●●●
●
●●●●●●
●●●●●●
●
●●●●●●
●●●
●

●●●●●●●●●●●●
●●●
●
●●●●●
●
●●●●●●
●●●
●

●●●●●
●●●●●●●
●
●●
●

●●●●●
●
●●●●

●
●●

●

●
●

●●●●●
●
●●●●●●
●●●
●

●●●●●
●
●●●●●●
●
●
●
●

●●●●●
●
●●●●●●
●●●
●●

●●●●
●
●●●●●●●●
●
●

●●●●●●●●●●●●
●●●
●

●●●●●
●
●●●●●●●
●

●
●

●●●●●
●●●●●●●
●●●
●

●●●●

●

●
●●●●●●●●
●●

●●●●●
●●
●●●●●
●●●
●

●●●●●
●●●●●●●
●●●
●

●●●●●
●●●●●●●
●●●
●
●●●●●
●●●●●●●
●●●
●

●●

●●●
●
●●●●●
●●●●
●

●●●●●
●
●●●●●●
●●●
●

●●●●●
●
●●●●●●
●●●
●

●●●●●
●●●●●●●
●
●
●
●

●●●●●
●
●●●●●●
●●

●

●

●●●●●
●
●●●●●●●
●●
●

●●●●●
●

●●●●●●●
●●
●

●●●●●●●●●●●●●
●●
●

●

●

●●●●●●●●●●
●●●
●

●●●●●
●
●●●●●●
●●●
●

●●●●●
●
●●●●●●
●●●
●

●●●●●●●●●●●●
●●●
●

●●●●●

●

●●●●

●●●●
●
●

●●●●●
●
●
●
●●●●
●●●
●

●●●●●
●
●●●●●●
●●●
●

●●●●●
●
●●●●●●●
●●
●

●●●●●
●●●●●●●●
●●
●

●●●●●
●
●●●●●●●
●●
●

●●●●●
●●●●●●●
●●

●
●
●●●●●
●
●●●●●●
●
●
●●

●●●●●
●
●●●●●●●
●●●
●●●●●
●
●●●●●●
●●●

●

●●●●●
●
●●●●●●
●●●
●

●●●●●
●
●●●●●●
●●●
●

●●●●●
●
●●●●●●●●
●
●

●●

●

●
●
●
●●●●●●
●●●
●

●●●●●
●
●●●●●●
●●
●●
●●●●●
●
●●●●●●●
●●
●

●●●●●
●
●●●●●●
●●●
●

●●●●●
●
●
●
●●●●
●●
●
●

●●●●●
●
●●
●●●●
●●●
●

●●●●●
●
●●●●●●
●●●
●

●●●●●
●
●●●●●●
●
●
●
●

●●●●●
●
●●●●●
●●●●
●

●●●●●
●
●●●●●●

●

●●
●

●●●●●
●
●●●●●●
●●●
●

●●●●●
●
●●●●●●●●●

●

●●●●●
●●●●●

0 200 400 600 800 1000

70
00

80
00

90
00

11
00

0
13

00
0

Instant time

E
xe

cu
tio

n
T

im
e

(c) Periodic inputs: 100
iterations

●●●●
●●
●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●
●
●

●

●●●●●●●●●●●●●
●●

●

●●●●●
●
●●●●●

●

●●●●●●●●●
●
●●●●●●●●●
●
●●●●●
●
●●●●●●●●●
●
●●●●●
●
●●●●●●●●●
●
●●●●●
●
●●●●●●
●●

●

●●●●●●
●
●●●●●●●●●
●
●●●●●
●
●●●●●●●●●
●
●●●●●
●
●●●●●●●●●●●●●●●

●
●●●●

●
●●

●

●
●
●●

●

●●
●
●●●●●●●●●
●
●●●●●
●
●●●●●●●●●
●
●●●●●
●
●●●●●●●●●
●
●●
●●●
●
●●
●●●●●●●
●
●●
●
●●
●
●
●
●●●●●●●●●●●●●

●
●●●●●●●●●
●
●●●●●
●
●●●●●●●●●
●
●●●●●
●
●●●●●●●●●
●
●●●●●
●●●●●●●●●
●
●
●●●●●
●
●●●●●●●●●
●
●●●●●
●
●●●●●●●●●
●
●●●●●
●
●●●●●●●●●
●
●●

●
●●
●
●●●●●
●●●●

●

●●●●●
●
●●●●●●●●●
●
●●●●●
●
●●●●●●●●●
●
●●●●●
●
●●●●●●●●●
●
●●●●●
●
●●●●●●●●

●

●

●●●

●

●
●
●●●●●●●●●
●
●●●●●
●
●●●●●●●●●
●
●●●●●
●
●●●●●●●●●
●
●●●●●
●
●●●●●●●●●●●●●

●
●
●
●●●●●●●●●
●
●●●●●
●
●●●●●●●●●
●
●●●●●
●
●●●●●●●●●
●

●●●●●
●
●●●●

●●●●●
●
●●●●●
●
●●●●●●

●

●●●●●●●●
●
●●●●●●●●●
●
●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●

●
●●●●●
●●●●●

●

●●●●
●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●

●
●●●●●●●●●
●
●●●●●●●●●●●●●●●

●

●
●●●

●

●
●●●●●●●●●
●
●●
●●●
●
●●
●●●●●●●

●
●●●●●
●
●●●●●●●●●
●
●●

●●●
●
●●●●●●●●●●●●●●

●●
●●●
●●●●●●
●
●●●●●
●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●

●
●●●●●
●●

●

●●●●●●●
●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●

●
●●●●●●

●

●
●

●

●

●

●●●
●
●●●●●●●●●●●●●●●

●
●●●●●●●●●
●
●●●●●
●
●●●●

0 200 400 600 800 1000

80
00

90
00

10
00

0
11

00
0

12
00

0

Instant time

E
xe

cu
tio

n
T

im
e

(d) Periodic inputs: 200
iterations

Figure 3: Trace of execution time measurements for
every execution condition.

Plots of traces for every execution condition defined above are
presented in Figure 3 where execution times are measured in
number of cpu cycles. Non determinism is particularly stressed
in Figure 3(a) i.e. for one input value, the task execution time
takes several different values due to the hardware components.
The periodic cases show that the greatest execution time mea-
surement of each path is always lower than the lowest execution
time measurement of the following path.

ETPs in Figure 4 support the idea of modeling task execution
time with a random variable for non deterministic hardware

7

Execution Time

P
ro

ba
bi

lit
y

de
ns

ity

14000 18000 22000

0.
00

0
0.

00
5

0.
01

0
0.

01
5

(a) One input
Execution Time

P
ro

ba
bi

lit
y

de
ns

ity

10000 20000 30000 40000 50000 600000.
00

00
0.

00
10

0.
00

20
0.

00
30

(b) Random inputs

Execution Time

P
ro

ba
bi

lit
y

de
ns

ity

7000 8000 9000 11000 13000

0.
00

0
0.

00
5

0.
01

0
0.

01
5

(c) Periodic inputs: 100
iterations

Execution Time

P
ro

ba
bi

lit
y

de
ns

ity

8000 9000 10000 11000 12000

0.
00

0.
01

0.
02

0.
03

0.
04

(d) Periodic inputs: 200
iterations

Figure 4: Execution Time Profile for every execution
condition.

architectures. They highlight the number of different executed
paths according to Definition 3: one path in the first case, four
paths in the second and third case, and three paths in the fourth
case. Filtering the execution times except the peaks of highest
probability density (Equation (1)), we deduce the experimental
TSR and then the number of probabilistic laws characterizing
the timing behavior of the task for the considered architecture.

In addition, we deduce from the ETP in the random case the
natural frequencies of ns and the value of ∆t in Equation (4),
results are in Table 1.

Path δi Natural Frequency Ti ∆t

1 6300 0

2 8000 1700

3 9750 1750

4 11600 1850

Table 1: Determination of the natural frequencies of ns
in the random case.

Hypothesis of a constant ∆t is confirmed with an error rate
of 9%.

With regard to the spectral analysis of ns, stationarity would
only be achieved in the first case because only one path is exe-
cuted.

Trace T One path Random Period 100 Period 200

KPSS 0.187 0.243 3.933 3.008

Table 2: Results of the KPSS test for the different
traces of execution time.

Results of the stationarity analysis by the KPSS test, pre-
sented in Table 2, highlight the stationarity in the one path
case, as we conjectured it in Section 3, and also in the random
case. The random case is actually a mixture law that takes into
account the four laws composing ns. Blocks of execution time
measurements are considered to belong to the same mixture law
and explaining why stationarity is achieved. Non stationarities
in the last two cases are well detected.

5. CONCLUSIONS
Stationarity is often assumed in stochastic system analyses

while it is required to apply statistical models, like the EVT,
and derive reliable probabilistic bounds.

While there is no systematic way to prove stationarity, the
spectral analysis of real-time multi-path tasks provides a new
paradigm to study the stationarity of the timing behavior of a
task.

The spectral analysis also intends to guarantee the task path
coverage required to have safe statistical models.

References
[1] WCET project/ Benchmarks, 2013.
[2] S. Altmeyer, B. Lisper, C. Maiza, J. Reineke, and C. Rochange.

WCET and mixed-criticality: What does confidence in WCET esti-
mations depend upon? In 15th International Workshop on Worst-
Case Execution Time Analysis, WCET 2015, July 7, 2015, Lund,
Sweden, pages 65–74, 2015.

[3] G. Bernat, A. Colin, and S. Petters. pWCET: A tool for probabilistic
worst-case execution time analysis of real-time systems. Technical
report, 2003.

[4] G. C. Buttazzo. Hard Real-Time Computing Systems : Predictable
Scheduling Algorithms and Applications. The Kluwer international
series in engineering and computer science. Kluwer Academic Pub-
lishers, Boston, 1997. 3rd edition 2000.

[5] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega,
L. Kosmidis, J. Abella, E. Mezzeti, E. Quinones, and F. J. Ca-
zorla. Measurement-Based Probabilistic Timing Analysis for Multi-
path Programs. In the 24th Euromicro Conference on Real-Time
Systems, Pise, Italy, July 2012.

[6] P. Embrechts, C. Klüppelberg, and T. Mikosch. Modelling extremal
events for insurance and finance. Applications of mathematics.
Springer, Berlin, Heidelberg, New York, 1997.

[7] J. Hansen, S. Hissam, and G. A. Moreno. Statistical-Based WCET
Estimation and Validation. In 9th International Workshop on
Worst-Case Execution Time Analysis (WCET’09), pages 1–11,
2009.

[8] M. Hillary. You can’t control what you can’t measure, or why it’s
close to impossible to guarantee real-time software performance on
a cpu with on-chip cache. Technical report, Applied Microsystems
Corp, 2002.

[9] D. Kwiatkowski, P. C. B. Phillips, P. Schmidt, and Y. Shin. Testing
the null hypothesis of stationarity against the alternative of a unit
root : How sure are we that economic time series have a unit root?
Journal of Econometrics, 54(1-3):159–178, 00 1992.

[10] Y. Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean. A Trace-Based Sta-
tistical Worst-Case Execution Time Analysis of Component-Based
Real-Time Embedded Systems. In 16th IEEE International Confer-
ence on Emerging Technology and Factory Automation (ETFA11),
WiP session, September 2011.

[11] R. Manuca and R. Savit. Stationarity and nonstationarity in time
series analysis. Phys. D, 99(2-3):134–161, Dec. 1996.

[12] V.-A. Paun, B. Monsuez, and P. Baufreton. On the Determinism
of Multi-core Processors. In C. Choppy and J. Sun, editors, 1st
French Singaporean Workshop on Formal Methods and Applica-
tions (FSFMA 2013), volume 31 of OpenAccess Series in Infor-
matics (OASIcs), pages 32–46, Dagstuhl, Germany, 2013. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[13] J. Reineke. Randomized caches considered harmful in hard real-time
systems. LITES, 1(1):03:1–03:13, 2014.

[14] L. Santinelli, J. Morio, G. Dufour, and D. Jacquemart. On the
Sustainability of the Extreme Value Theory for WCET Estimation.
In 14th International Workshop on Worst-Case Execution Time
Analysis, pages 21–30, 2014.

[15] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. B. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. P. Puschner, J. Staschulat, and P. Sten-
ström. The worst-case execution-time problem - overview of methods
and survey of tools. ACM Trans. Embedded Comput. Syst., 7(3),
2008.

8

Scheduling of parallel applications on many-core
architectures with caches: bridging the gap between

WCET analysis and schedulability analysis

Viet Anh Nguyen, Damien Hardy, and Isabelle Puaut
University of Rennes 1/IRISA, France

anh.nguyen@irisa.fr, damien.hardy@irisa.fr, isabelle.puaut@irisa.fr

ABSTRACT
Estimating the worst-case execution time (WCET) of par-
allel applications running on many-core architectures is a
significant challenge. Some approaches have been proposed,
but they assume the mapping of parallel applications on
cores already done. Unfortunately, on architectures with
caches, task mapping requires a priori known WCETs for
tasks, which in turn requires knowing task mapping (i.e.,
co-located tasks, co-running tasks) to have tight WCET
bounds. Therefore, scheduling parallel applications and es-
timating their WCET introduce a chicken and egg situa-
tion. In this paper, we address this issue by developing an
optimal integer linear programming formulation for solving
the scheduling problem, whose objective is to minimize the
WCET of a parallel application. Our proposed static parti-
tioned non-preemptive mapping strategy addresses the effect
of local caches to tighten the estimated WCET of the par-
allel application. We report preliminary results obtained on
synthetic parallel applications.

1. INTRODUCTION
Many-core architectures have become mainstream in mod-

ern computing systems. Along with them, parallel program-
ming frameworks have been developed to utilize the power
of many-core architectures. However, employing many-core
architectures in hard real-time system raises many concerns.
One significant issue is to precisely estimate the worst-case
execution time (WCET) of parallel applications. WCET es-
timation methods for many-core architecture must take into
account not only program paths and architecture (as ad-
dressed in WCET estimation methods for uni-core architec-
ture [6]) but also resource contentions (i.e., bus contention
and shared memory contention [3]). Moreover, when an-
alyzing the timing behavior of parallel applications, these
methods also have to consider the application’s properties
(i.e., multitasking, inter-task communication and synchro-
nization).

Some approaches reported promising results in estimating
the WCET of parallel applications running on many-core ar-
chitectures. Ozaktas et al. [4] combine the estimated worst-
case stall times caused by inter-task synchronization with
the tasks’ estimated WCETs to compute their worst case
response time. Then, the WCET of the parallel application
is estimated as the worst case task’s response time. In an-
other way, Potop-Butucaru et al. [5] integrate code sections
of tasks running on cores as well as communications between
them to produce an unified control flow graph. Then, the
classical implicit path enumeration technique (IPET [6]) is
applied to estimate the WCET of the parallel application.

These two methods assume the mapping of the parallel ap-
plications on cores a priori known. However, the mapping
of the parallel application influences the worst-case response
time of the tasks, and hence affects the WCET of the entire
parallel application.

As an illustration, let us consider a parallel application
containing three tasks T1, T2, and T3 to be mapped onto
on a two-core architecture with a private cache on each core.
Let us assume that T1 and T2 access the same memory
block m, and that T1 and T2 are independent from T3. Let
us consider two mappings: (i) T1 and T2 are assigned to
one core and T2 runs after T1, while T3 is assigned to the
other core; (ii) T1 is assigned to one core, while T2 and
T3 are assigned to the other core and T2 runs after T3.
In the first case, T2’s access to block m is a hit because
m was loaded by T1. Therefore, the WCET of the parallel
application in the first case is smaller than in the second
case. This small example shows that the WCET of the entire
parallel application highly depends on the mapping of its
tasks on the cores. This motivates the need for optimal
scheduling/mapping of the parallel application to tighten
its estimated WCET.

In the literature, many scheduling approaches for parallel
applications running on many-core architectures have been
proposed [1]. However, most of them consider tasks’ WCETs
as constant values. As explained above, tasks’ WCETs highly
depend on the mapping of the applications tasks, due to the
effect of private caches. Therefore, scheduling a parallel ap-
plication without considering the effect of private caches on
tasks’ WCETs is suboptimal. Consequently, scheduling a
parallel application and estimating its WCET are interde-
pendent problems and have to be jointly solved for getting
tight estimated WCET of the parallel application.

Ding et al. [2] propose a task scheduling method that
minimizes shared cache interferences to tighten estimated
WCETs. Their approach is different with us since we con-
sider the effect of private caches in the task scheduling pro-
cess. Additionally, the communication cost between tasks,
which varies depending on task mapping, is not taken into
account in [2].

In this paper, we propose a static scheduling solution for
an isolated parallel application running on a many-core ar-
chitecture. Our proposed scheduler not only respects depen-
dence constraints between tasks (i.e., communications and
synchronizations) but also takes into account the effect of lo-
cal caches on tasks’ WCETs. We develop an optimal integer
linear programming model for solving the task scheduling
problem, whose objective is to minimize the WCET of the
parallel application. To the best of our knowledge, we are

9

Figure 1: Arbitrary (left) and fork-join (right) task graphs

the first ones considering the effect of private caches on tasks’
WCETs when scheduling parallel applications on many-core
architectures. Our proposed scheduling approach is a par-
titioned non-preemptive scheduling approach: tasks are not
allowed to be migrated and preempted, which prevents the
system from suffering from hard-to predict migration and
preemption costs (i.e., mainly caused by losses of working
sets stored in local caches).

The paper is organized as follows. Section 2 introduces
the application and architecture model, and presents the
problem formulation. Section 3 presents an ILP formulation
for solving the identified scheduling problem. Section 4 gives
preliminary experimental results. Finally, we summarize the
content of paper and give directions for future work.

2. MODEL AND PROBLEM FORMULATION
Application model. The parallel application is repre-

sented as a directed acyclic task graph (as illustrated in
Fig. 1). Following the terminology used in [2], in these
graphs, nodes represent tasks (i.e., pieces of code without
communication or synchronization inside), and edges repre-
sent communications or synchronizations (precedence rela-
tions) between pairs of tasks. For each edge, the volume of
transmitted data (zero for synchronizations) is known. For
example, in the task graph illustrated in Fig. 1, the arrow
from node T5 to node T1 means that T1 is not authorized
to execute before T5 ends. We consider two instances of
the task models: (1) arbitrary model, which does not con-
strain communications and synchronizations between tasks;
(2) the popular fork-join model.

Architecture model. Our proposed scheduler applies
to many-core architectures equipped with private caches, in-
cluding the one depicted in Fig. 2. In the figure, cores are
homogeneous and have a private cache. Our model can deal
with any type of cache (instruction cache, data cache, and
unified cache).

Problem formulation. Our scheduling method takes
as input the task graph of an isolated parallel application
and the following information: (a) the communication costs
between tasks (when running on the same core, and when
running on different cores); (b) tasks’ WCETs when run-
ning alone as well as tasks’ WCETs when running immedi-
ately after another task on the same core (to consider the
effect of private caches). As a result the method produces a
static partitioned non-preemptive schedule that determines
on which cores each task is assigned, as well as a static

Figure 2: An example of many-core architecture with private
caches

schedule on each core. The produced schedule minimizes
the WCET of the parallel application.

3. ILP FORMULATION OF TASK SCHEDUL-
ING/MAPPING PROBLEM

Due to space limitations, only the main ILP constraints
are presented hereafter. In the ILP formulation, we use up-
percase letters for constants, and lowercase letters for vari-
ables to be calculated by the ILP solver. The solution is a
set of variables that indicates static task mapping on cores
and static task scheduling on each core.

Base constraints for task mapping and scheduling.
We define a 0-1 variable mk

i to indicate whether task ti is
assigned to core k or not. Since the proposed scheduler is
partitioned, each task is mapped to exactly one core, there-
fore:

∑

k∈K
mk

i = 1. (1)

In equation (1), K represents the set of cores. Besides, we
define a 0-1 variable oj→i to determine whether task ti runs
right after task tj or not, and a 0-1 variable fk

i to decide
whether task ti is the first task running on core k or not.
Since the produced schedule is non-preemptive, a task has
at most one task running right after it, thus:

∑

i∈T−{j}
oj→i ≤ 1. (2)

In equation (2), T represents the set of tasks. Addition-
ally, one core has at most one first-running task, therefore,
the following constraint is introduced:

∑

i∈T
fk
i ≤ 1. (3)

Further constraints for task mapping/scheduling.
The objective of the scheduling problem is to minimize the

WCET of a parallel application. Let us represent the WCET
of the parallel application by an integer variable wcetpro, the
objective function is described as:

minimize wcetpro. (4)

The WCET of the parallel application has to be larger
than or equal to the latest finish time of any of its tasks.
If the latest finish time of task ti is represented by integer
variable lfti, the following constraint is introduced:

wcetpro ≥ lfti, ∀ti ∈ T. (5)

In the following, we present the ILP constraints for com-
puting the latest finish time of tasks and for computing the
WCET of tasks by considering the effect of local caches.

Constraints on tasks’ latest finish times.

10

The latest finish time of ti (lfti) is the sum of its latest
start time (denoted as lsti) and its worst case execution time
(denoted as wceti):

lfti = lsti + wceti. (6)

In equation (6), wceti is a variable introduced to integrate
the variations of tasks’ WCETs due to the effect of local
caches (as explained later). The latest start time of ti (lsti)
is the sum of its latest ready time (denoted as lrti which is
calculated in considering its running order) as well as the
worst communication delay with its predecessors (denoted
as wci):

lsti = lrti + wci. (7)

In equation (7), the worst communication delay of ti with
its predecessors (wci) is computed by considering the pre-
decessors’ allocations, i.e.,whether they are allocated on the
same core or different cores (as explained later). The latest
ready time of ti (lrti) is calculated by considering two cases:
(1) ti is the first task running on a core; (2) ti runs right
after another task on the same core.

In the first case, if ti has some predecessor, its latest ready
time has to be equal to or larger than the latest finish time
of its predecessors since ti cannot be executed before the
completion of its predecessors. Otherwise, its latest ready
time is greater than or equal to zero. Let’s denote the set of
predecessors of ti as pred(ti). The latest ready time of ti is
expressed as:

lrti ≥ 0

lrti ≥ lftj , ∀tj ∈ pred(ti).
(8)

In the second case, if ti is assigned to the same core as tj
and runs immediately after tj , then the latest ready time of
ti is larger than or equal to the latest finish time of tj , lrti ≥
lftj . Therefore, the latest ready time of ti in the second case
is calculated according to the following constraint:

lrti ≥ oj→i ∗ lftj . (9)

Since (9) is a quadratic form, we linearize (9) as:

lrti ≥ lftj + (oj→i − 1) ∗M, (10)

with M the sum of all tasks’ WCETs when running alone
plus all communication costs between pairs of tasks when
running on different cores, such that M is guaranteed to be
higher than the latest finish time of any tasks.

Let us denote the communication cost between ti and tj
when they are placed on the same core and different cores
as Cs

j→i and Cd
j→i, respectively. The worst communication

delay of ti (wci) with its predecessors is calculated as:

wci ≥ si,j ∗ Cs
j→i + (1− si,j) ∗ Cd

j→i, ∀j ∈ pred(ti). (11)

In equation (11), si,j is a 0-1 variable to indicate whether
two tasks ti and tj are assigned to the same core or not.

Constraints on tasks’ WCETs.
To account for the variability of tasks’ WCETs due to

private caches, two cases have to be considered when calcu-
lating the WCET of a task ti (variable wceti): (1) ti is the
first task running on a core; (2) ti runs right after another
task. Let’s denote by WCETi the WCET of ti when running
alone, and WCETj→i as the WCET of ti when running right
after tj on the same core. In the first case, the WCET of ti
is equal to its WCET when running alone, wceti = WCETi.
In the second case, the WCET of ti is equal to its WCET

when running right after another task, wceti = WCETj→i.
The WCET of ti is calculated as:

wceti =
∑

j∈T−{i}
oj→i ∗WCETj→i+

∑

k∈K
fk
i ∗WCETi. (12)

4. EXPERIMENTAL RESULTS
Our scheduling approach was evaluated on synthetic task

graphs of isolated parallel applications. The communica-
tion cost between two tasks ti and tj when running on the
same core (Cs

j→i) and different cores (Cd
j→i) is generated

randomly with the constraint Cs
j→i < Cd

j→i. The WCET of
task ti when running right after task tj is calculated accord-
ing to the following equation:

WCETj→i = WCETi − ri,j ∗WCETi. (13)

In equation (13), in order to address the effect of local
caches on tasks’ WCETs, ri,j (0 ≤ ri,j < 1) is randomly
chosen according to the relation between ti and tj ; the range
of ri,j in case tj is direct predecessor of ti is higher than that
in case tj is indirect predecessor of ti and that in case tj and
ti are independent.

In order to evaluate the performance of the proposed sched-
uler, we compare the WCET values obtained by our pro-
posed scheduling method (S CACHE), a random scheduling
method (S RAND) and scheduling method without taking
into account the effect of private caches (S NOCACHE). The
smaller the WCET, the better the scheduling method. For
S RAND, we first randomly allocate tasks to cores, then
tasks scheduling on each core is calculated such that commu-
nication/synchronization constraints are respected. We gen-
erate 10 schedules using S RAND and report the best, aver-
age and the worst of the estimated WCETs. For S NOCACHE,
we apply the proposed ILP formulas for getting the schedule,
but the WCET of a task when running right after another
task on the same core is considered to be equal to its WCET
when running alone (WCETj→i = WCETi); when esti-
mating the WCET of the entire parallel application, tasks’
WCETs are re-evaluated by considering the effect of private
caches. We use CPLEX version 12.5 as ILP solver.

For space considerations, we provide results for two ex-
amples of task graphs only (see Fig. 3). In the example
of fork-join graph (illustrated in Fig.3), the communication
cost between two tasks t1 and t3 when running on the same
core is 247785 cycles, and when running on different cores
is 376633 cycles. In our example, the range of ri,j in case tj
is direct predecessor of ti is set to [0.6;0.9], the range of ri,j
in case tj is indirect predecessor of ti is set to [0.2;0.5], and
the range of ri,j in case ti and tj are independent is set to
[0;0.1].

Fig. 4(b) gives the static schedule obtained by our method
for our example of fork-join graph on a two-core architecture
equipped with a private cache per core. In the schedule, up
arrows denote ready time of tasks (lrti), while down arrows
denote the finish time of tasks (lfti). Colored boxes repre-
sent communications (in this specific case, there is no over-
lap between communications and computations, but over-
laps may happen in the general case).

Fig. 4(a) compares estimated WCETs obtained when us-
ing the different scheduling methods for our example of ar-
bitrary graph and fork-join graph. We normalize all results
with respect to the WCET value obtained by S CACHE.
Our scheduling method generates schedules that lead to the
smallest estimated WCET. Moreover, the WCET obtained

11

Figure 3: Our example of arbitrary graph and fork-join graph.

(a) (b)

Figure 4: (a) WCET comparison between different scheduling methods and (b) scheduling graph of tested fork-join graph.

by S CACHE is less than 43% in our example of arbitrary
graph and 26% in our example of fork-join graph when com-
pared with the average results of S RAND. The sizes of the
test graphs is small, leading to a small solution space, ex-
plaining why S RAND finds a schedule as good as S CACHE
(i.e., in our example of fork-join graph, the best WCET ob-
tained by S RAND is more than 5% when compared to the
WCET obtained by S CACHE). Additionally, compared to
S NOCACHE, we achieve 16% reduction in WCET in our
example of arbitrary graph and 5% reduction in WCET in
our example of fork-join graph, which shows the interest of
considering the effect of private caches on tasks’ WCETs in
task scheduling. Furthermore, the runtime of our scheduling
approach for these two graphs is very small (10 milliseconds
on a 3GHz Intel Core i7 CPU with 16GB of RAM).

5. CONCLUSION
In this paper, we have developed an ILP formulation for

finding an optimal schedule for a parallel application on a
many-core architecture. Experimental results show the ad-
vantage of the proposed scheduler when considering the ef-
fect of private caches on tasks’s WCETs. In the future, we
will investigate the scalability of the proposed scheduling
strategy by applying it to synthetic graphs with larger size,
as well as to real applications. Additionally, we will address
the effect of shared resource interferences (i.e., shared bus)
in task scheduling.

6. ACKNOWLEDGMENTS

This work was supported by PIA project CAPACITES
(Calcul Parallèlle pour Applications Critiques en Temps et
Sûreté), reference P3425-146781). The authors would like
to thank Benjamin Rouxel for comments on earlier versions
of this paper.

7. REFERENCES
[1] R. I. Davis and A. Burns. A survey of hard real-time

scheduling for multiprocessor systems. ACM computing
surveys, 2011.

[2] H. Ding, Y. Liang, and T. Mitra. Shared cache aware task
mapping for wcrt minimization. Asia and south pacific -
Design automation conference (ASP-DAC), 2013.

[3] G. Fernandez, J. Abella, E. Quiñones, C. Rochange,
T. Vardanega, and F. J. Cazorla. Contention in multicore
hardware shared resources: Understanding of the state of
the art. International workshop on worst-case execution
time analysis (WCET), 2014.

[4] H. Ozaktas, C. Rochange, and P. Sainrat. Minimizing the
cost of synchronisations in the wcet of real-time parallel
programs. International workshop on software and compiler
for embedded systems (SCOPES), 2014.

[5] D. Potop-Butucaru and I. Puaut. Integrated worst-case
execution time estimation of multicore applications.
International workshop on worst-case execution time
analysis (WCET), 2013.

[6] R. Whilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner,
J. Staschulat, and P. Stenström. The worst-case execution
time problem: overview of methods and surveys of tools.
ACM transactions on embedded computing systems, 2008.

12

A Comparative Study of the Precision of Stack Cache
Occupancy Analyses

Amine Naji
U2IS

ENSTA ParisTech
Université Paris-Saclay

amine.naji@ensta-paristech.fr

Florian Brandner
LTCI, CNRS

Telecom ParisTech
Université Paris-Saclay

florian.brandner@telecom-paristech.fr

ABSTRACT
Utilizing a stack cache in a real-time system can aid pre-
dictability by avoiding interference between accesses to reg-
ular data and stack data. While loads and stores are guar-
anteed cache hits, explicit operations are required to man-
age the stack cache. The (timing) behavior of these oper-
ations depends on the cache occupancy, which has to be
bounded during timing analysis. The precision of the com-
puted occupancy bounds naturally impacts the precision of
the timing analysis. In this work, we compare the precision
of stack cache occupancy bounds computed by two different
approaches: (1) classical inter-procedural data-flow analy-
sis and (2) a specialized stack cache analysis (SCA). Our
evaluation, using MiBench benchmarks, shows that the SCA
technique usually provides more precise occupancy bounds.

Categories and Subject Descriptors
F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Program analysis; C.3 [Special-
Purpose and Application-Based Systems]: Real-time
and embedded systems

Keywords
Program Analysis, Stack Cache, Real-Time Systems

1. INTRODUCTION
To meet the timing constraints in systems with hard dead-

lines, the worst-case execution time (WCET) of software
needs to be bounded. Many features of modern processor
architectures, such as caches, improve the average perfor-
mance, but have an adverse effect on WCET analysis. Time-
predictable computer architectures [7] thus propose alterna-
tive designs that are easier to analyze, particularly focusing
on the memory hierarchy [5, 6]. One such design is the stack
cache [1, 8], i.e., a cache for stack data complementing a reg-
ular data cache. This promises improved analysis precision,
since unknown access addresses can no longer interfere with
stack accesses (and vice versa). Secondly, the stack cache
design is simple and thus easy to analyze [4].

The cache can be implemented using a circular buffer us-
ing two pointers: the memory top pointer MT and the stack
top pointer ST. The ST points to the top element of the
stack and data between ST and MT is present only in the
cache. The remaining data above1 MT is available only in
main memory. In contrast to traditional caches, memory
accesses are guaranteed hits and the compiler (programmer)
is responsible to enforce that all stack data is present in the
cache when needed using three stack control instructions:
reserve (sres), free (sfree), and ensure (sens). The worst-
case (timing) behavior of these instructions only depends on
the worst-case spilling and filling of sres and sens respec-
tively, which can be bounded by computing the maximum
and minimum cache occupancy [4], i.e., the value of MT−ST.

Stack cache occupancy bounds, and the associated spill/fill
costs can be computed using the recently proposed Stack
Cache Analysis (SCA) [4]. The approach splits the analysis
problem into several smaller steps, using context-insensitive
data-flow analyses to capture function-local properties and
longest/shortest path searches on the call graph to model
calling contexts. An alternative solution would be to simply
model the problem as a traditional inter-procedural data-
flow analysis (iDFA) [2]. This appears simpler to imple-
ment, as the various steps of SCA are modeled in a single
concise analysis. However, the impact on analysis precision
has not been investigated so far. Indeed, overestimating the
occupancy can increase the spill costs associated with sres

instructions, while underestimating the occupancy can in-
crease the fill costs of sens instructions. This work thus
compares the precision of the two analysis approaches with
respect to the attained max./min. occupancy bounds.

The paper is structured as follows: Section 2 provides
some background related to the stack cache as well as static
program analysis. We then present the two approaches to
analyze the occupancy bounds for the stack cache. The anal-
yses are evaluated in Section 4 before concluding.

2. BACKGROUND
The stack cache is implemented as a ring buffer with two

pointers [1]: stack top (ST) and memory top (MT). The top of
the stack is represented by ST, which points to the address of
all stack data either stored in the cache or in main memory.
MT points to the top element that is stored only in main
memory. The stack grows towards lower addresses.

The difference MT−ST (occupancy) represents the amount
of occupied space in the stack cache, which cannot exceed
the size of the cache’s memory |SC|, thus 0 ≤ MT−ST ≤ |SC|.
1We assume that the stack grows towards lower addresses.

13

The stack control instructions manipulate the two stack point-
ers and initiate memory transfers to/from the cache to main
memory, while preserving the equation from above. A brief
summary is given below, details are available in [1]:

sres k: Subtract k ≤ |SC| from ST. If the cache size is
exceeded, a memory spill is initiated to decre-
ment MT until MT− ST ≤ |SC|.

sfree k: Add k ≤ |SC| to ST. If this would result in
MT < ST, MT is set to ST. Memory is not accessed.

sens k: Ensure that the occupancy is larger than
k ≤ |SC|. If this is not the case, a memory fill
is initiated to increment MT until MT− ST ≥ k.

The compiler manages the stack frames of functions quite
similar to other architectures with exception of the ensure
instructions. For brevity, we assume a simplified placement
of these instructions. Stack frames are allocated upon en-
tering a function (sres) and freed immediately before re-
turning (sfree). A function’s stack frame might be (par-
tially) evicted from the cache during calls. Ensure instruc-
tions (sens) are thus placed immediately after each call. We
also restrict functions to only access their own stack frames.2

2.1 Data-Flow Analysis
Data-flow analysis (DFA) is used to gather information

about a program without executing it. A DFA is a tuple
A = (D, T,u), where D is an abstract domain (e.g., values
of stack pointers), transfer functions Ti : D → D in T model
the impact of individual instructions i on the domain, and
u : D × D → D is a join operator. Together with a CFG
an instance of an (intra-procedural) DFA can be formed,
yielding a set of data-flow equations. The join operator (u)
and transfer function (T) are instantiated to form IN(i) and
OUT(i) functions, which are associated with an instruction
i and represent values over D. The resulting (recursive)
equations are finally solved by iteratively evaluating these
functions until a fixed-point is reached [2].

Inter-procedural analyses additionally consider the call re-
lations between functions. In this case, additional data-flow
equations are constructed modeling function calls and re-
turns [2]. Often these analyses are context-sensitive, i.e., the
analyses distinguish between (bounded) chains of functions
calls. Such a chain of nested function calls is then called a
call string, which defines a calling context that can be dis-
tinguished from other parts of the program calling the same
function. Call strings typically have a length limit. The
longer the call strings, the higher the ability to distinguish
different contexts. Consequently, the analysis results are
more precise. Increasing the call string length may also in-
crease the computation complexity and the required memory
footprint since additional data-flow equations are created for
each context. A call string length of zero corresponds to a
context insensitive data-flow analysis.

3. CACHE OCCUPANCY ANALYSES
We present how to compute the cache’s occupancy, which

ca be used to bound timing, using an inter-procedural data-
flow analysis (iDFA) and a tailored stack cache analysis.

3.1 Inter-procedural Data-flow Analysis
The domain of the iDFA approach are positive integer val-

ues in D = {0, . . . , |SC|}, where |SC| represents the stack

2Data that is larger than the stack cache or that is shared
can be allocated on a shadow stack outside the stack cache.

cache’s size. Since both, the min. and the max. occupancy
are needed, two analysis problems have to be defined. We
will start with the max. occupancy. The analysis starts at
the program entry, where the occupancy is assumed to be
0. It then propagates occupancy values along all execution
paths, while considering the effect of the instructions along
the path. Only the stack control instructions (see Section 2)
can have an impact: (1) sres instructions increase occu-
pancy by their argument k, (2) sens instructions make sure
that the occupancy is larger than k, and (3) sfree instruc-
tions reduce the occupancy by k. The resulting data-flow
equation for an instruction i are given below:

OUTOcc(i) =





min(INOcc(i) + k, |SC|) if i = sres k
max(INOcc(i), k) if i = sens k
max(0, INOcc(i)− k) if i = sfree k
INOcc(i) otherwise

The occupancy right before an instruction (due to control-
flow joins) is derived by taking the maximum occupancy
from any of its predecessors (Preds), except for the pro-
gram’s entry. In the case of inter-procedurual analysis, pre-
decessors can also be calls or returns from other functions:

INOcc(i) =

{
0 if i = entry,
maxs∈Preds(i)(OUTOcc(s)) otherwise

The data-flow equations to compute the min. occupancy
are very similar. Only the max operator of the INOcc(i)
equation needs to be replaced by the min operator. Context
sensitivity can easily be ensured by adding context informa-
tion to the data-flow equations of the respective instructions.

This model is also implemented and validated in Absint’s
aiT timing analyzer tool [10].

3.2 Stack Cache Analysis
The stack cache analysis (SCA) [4] relies on similar DFA

analyses. However, instead of a single, large inter-procedural
DFA, several smaller function-local analyses are used. The
impact of other functions at function calls in these DFAs
are modeled through minimum and maximum displacement
values, which represent the min./max. amount of data po-
tentially evicted from the the stack cache during a func-
tion call. Displacement values are computed by perform-
ing shortest/longest path search on program’s call graph
whose weights represent the reserved stack space k. Com-
plex context-sensitive analysis thus can be avoided.

The analysis is based on the observation that the occu-
pancy at any instruction within a function can be computed
from the occupancy at the function’s entry and the displace-
ment of all the potential function calls on any path leading
to the particular instruction. The min. occupancy thus can
be computed by considering the initial min. occupancy and
the max. displacement. Likewise, the min. displacement
allows to derive the max. occupancy.

The program is thus analyzed in several steps. First,
the min. and max. displacement of each function is com-
puted using longest/shortest path searches on a weighted
call graph. Next, local DFAs are performed to compute lo-
cal lower and local upper bounds on the min. and max. oc-
cupancy within each function assuming a stack cache that
is full at function entry. Finally, the concrete occupancy
bounds are computed for each function considering the oc-
cupancy bounds at its respective callers and the previously

14

computed local occupancy bounds. The final phase can de-
liver fully context-sensitive information, if so desired.

This analysis was implemented and validated against run-
time measurements in previous work [8].

4. EXPERIMENTS
We evaluated both approaches using the LLVM-based com-

piler framework of the Patmos processor [9], which comes
with a stack cache and its associated control instructions.
Benchmarks of the MiBench benchmark suite [3] were com-
piled using optimizations (-O2) and subsequently analyzed
using both techniques, assuming a stack cache size of 256 byte,
4 byte cache blocks, and a contexts string length of 0. Fig-
ure 1 shows the percentage of functions where the occupancy
bound at function entry of SCA was either greater, equal,
or smaller than that computed by iDFA.

ba
sic

math

bit
cn

ts
cjp

eg

crc
32

cs
us

an

dij
ks

tra
sm

all

djp
eg

dr
ijn

da
el eb

f fft
lam

e

pa
tric

ia
qs

or
t

raw
da

ud
io sa

y

se
ar

ch
sm

all sh
a

0

25

50

75

100

m
ax

.O
cc

.
m

in
.O

cc
.

Pe
rc

en
t

greater equal smaller

Figure 1: Percentage of occupancy bounds (max./min) by
SCA being (1) greater, (2) equal, or (3) smaller than iDFA.

When considering max. occupancy, SCA is less precise
when the delivered bound is greater, i.e., the lower portion
of the first bar of each benchmark should be as small as
possible. Indeed, these cases are rare (< 3% over all bench-
marks), while SCA is often more precise (34% on average).

The situation is inverse when considering min. occupancy.
Here, SCA is less precise when the delivered bounds is smaller.
This would be represented by the upper portion of the sec-
ond bar. However, this appears for one function of the three
benchmarks tiff2bw, tiffdither, and tiffmedian respec-
tively. SCA is usually even more precise (52% on average).

We repeated these experiments for iDFA with other call
string lengths (1, 2, 3, 10 and 20). However, we only ob-
served minor improvements for max. occupancy and almost
no change for min. occupancy. The bitcnts benchmark, for
instance, has a maximum call depth of 20, ignoring recur-
sive functions, and still does not show relevant improvements
with call strings of length 20 due to the impact of recursion
elsewhere as explained later.

Overall, SCA is almost always as precise or even more
precise than iDFA. The results are similar, albeit less pro-
nounced, with longer context string lengths.

4.1 Discussion
A closer look reveals that the imprecision of iDFA is mostly

due to chains of function calls, whose lengths exceed the
analysis’ context string length (e.g., due to recursion). Let
us first examine such situations for max. occupancy.

The problem of iDFA with long call chains is that calling
contexts are no longer distinguished, i.e., all information is
merged in a single calling context. The occupancy informa-
tion computed for these regions is, as expected, rather pes-
simistic, leading to considerable overestimation of the max.
occupancy. Even worse, the overly conservative occupancy
level is propagated out of these merged calling contexts along
control-flow edges of function returns. Recall that the meet
operator for this analysis is the max operator. This means
that the conservative max. occupancy bounds are even fur-
ther propagated, way beyond the merged calling contexts
that initially caused the imprecision. This particularly ap-
plies to recursive functions.

Example 1. Figure 2 shows an example illustrating this sit-
uation. Assume that function A consists of one basic block
and that function B is called before function D. Since B and
C recursively call each other, their respective max. occu-
pancy grows until they reach the stack cache size during
the fixed-point computation of iDFA (unless unbounded call
strings are used). The transfer functions for the return in-
structions then propagate the maximum to their respective
callers, which leads to a max. occupancy that is close to the
stack cache size right after the function call to C within B

(and vice verse). A similarly high occupancy is propagated
out of the recursion to the instruction succeeding the call
from A to B. The high occupancy might actually occur within
the recursion. However, the actual occupancy at this point
is much lower. The overestimation is further propagated to
function D. Resulting in overly conservative analysis results
there, even when the context string length is not exceeded.

A B C

D
Imprecision

Figure 2: Imprecision propagated out of recursive functions
when computing max. occupancy with iDFA.

Patmos’ newlib C library contains (potentially) recursive
functions in the start-up code of each program. iDFA thus
assumes that the stack cache is filled up entirely before even
reaching the program’s main function. Since the computed
max. occupancy at main is considerably overestimated, im-
precision is propagated throughout large portions of the con-
sidered benchmarks. An important observation here is that
increasing the call string length will not help fixing this prob-
lem, as the precision limit will be reached before the end
of the recursion (unless infinite call strings are used). The
SCA approach does not face this problem. Instead of rely-
ing on the occupancy propagated outwards by the recursive
functions, it simply relies on their displacement values. A
possible fix for this problem for iDFA would be to memo-
rize the occupancy level before each call. The occupancy
propagated backwards from a return then always has to be
smaller than the memorized value. However, the potentially
large displacement of the called function is ignored, which
may still lead to considerable overestimation.

A similar problem arises for non-recursive programs with
deep call chains containing two subsequent function calls
that eventually invoke the same function. iDFA then be-
haves similar to recursive programs as shown in Figure 3.

Example 2. Assume that, in this example, the function call
from B to C appears before the call from B to D. Then, iDFA

15

initially propagates an accurate occupancy level through the
calls from A to B and finally to C. At first, even the occu-
pancy at D is computed correctly. However, due to the deep
call chain leading up to C, both calling contexts for D (orig-
inating from B or D) are merged. Due to the intermittent
execution of D the occupancy is higher for this call chain.
This increases the max. occupancy of C. The increase is
subsequently propagated out of C to both of its callers. This
incidentally increases the occupancy after the call to C within
B. Which then again increases the occupancy at the follow-
ing call to D. This leads to a feedback loop similar to that
seen for recursive functions in the previous example.

A B D

C

Figure 3: Feedback loop enforcing imprecision of non-
recursive functions for iDFA computing max. occupancy.

Still, iDFA can be more precise than SCA (as shown by
or results). This is explained by an underestimation of the
min. displacement. As mentioned before, the min. displace-
ment is obtained by performing a shortest path search on the
program’s call graph. The path here represents nested func-
tion calls and its length the minimal amount of stack space
required in the stack cache by the functions stack frames
respectively. Now, consider a case where two leaf functions3

are called within a single basic block, i.e., when one function
is called the other function is called too. In this case, the
minimal path search will chose the function with the smaller
stack frame to compute the min. displacement. However,
since both functions are called, the actual min. displacement
is determined by the larger stack frame. This situation can,
of course, also appear in more general forms. The imprecise
min. displacement ultimately leads to an underestimation of
the max. occupancy observed in our experiments. However,
this appears to be of minor importance in practice.

For min. occupancy iDFA appears to be even more im-
precise. For one, this is explained by the fact that the max.
displacement (in contrast to the min. displacement) can be
computed precisely. SCA’s min. occupancy thus does not
suffer from inherent imprecision. In addition, iDFA spreads
imprecision as before in the presence of deep call chains.
This may even lead to feedback loops in non-recursive pro-
grams as described before. Two observations are particu-
larly interesting at this point. While the iDFA approach
is amenable to improvements by memorizing the max. oc-
cupancy before calls, such a fix appears to be impossible
here. The problem is that a lower bound cannot be estab-
lished as easily for function calls when the min. occupancy is
computed. Secondly, it appears that the precision could be
improved using very long call strings (ignoring cases incur-
ring recursion). This, however, leads to a paradox situation:
the precise computation of the min. occupancy would then
require high levels of context sensitivity in order to com-
pute the worst-case filling at sens instructions. The filling,
however, only depends on the nesting of functions called
right before the ensure and thus is by its nature context-
insensitive. The SCA approach exploits precisely this prop-
erty, and evidently achieves excellent results.

3Leaf functions do not call any other function.

5. CONCLUSION
We compared the precision of stack cache occupancy bounds

computed by two different approaches. On the one hand,
the iDFA approach, which models the problem as a tra-
ditional inter-procedural data-flow analysis. On the other
hand, the SCA approach that splits the analysis problem
into several smaller steps, using context-insensitive data-
flow analyses along with longest/shortest path searches on
the call graph. Our experiments revealed that iDFA suffers
from imprecision in nearly all benchmarks of the MiBench
benchmark suite. The lack of precision is due to chains of
function calls, whose lengths exceed the analysis’ context
string length (e.g., due to recursion). As a future work, we
plan to compare the efficiency (i.e computation complexity
and required memory footprint) of iDFA and SCA.

Acknowledgments
This work was supported by a grant (2014-0741D) from Dig-
iteo France: “Profiling Metrics and Techniques for the Op-
timization of Real-Time Programs” (PM-TOP).

6. REFERENCES
[1] S. Abbaspour, F. Brandner, and M. Schoeberl. A

time-predictable stack cache. In Proc. of the Workshop
on Software Technologies for Embedded and
Ubiquitous Systems. 2013.

[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.
Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 2nd edition, 2006.

[3] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. MiBench: A free,
commercially representative embedded benchmark
suite. In Proc. of the Workshop on Workload
Characterization, WWC ’01, 2001.

[4] A. Jordan, F. Brandner, and M. Schoeberl. Static
analysis of worst-case stack cache behavior. In Proc. of
the Conf. on Real-Time Networks and Systems, pages
55–64. ACM, 2013.

[5] S. Metzlaff, I. Guliashvili, S. Uhrig, and T. Ungerer. A
dynamic instruction scratchpad memory for embedded
processors managed by hardware. In Proc. of the
Architecture of Computing Systems Conference, pages
122–134. Springer, 2011.

[6] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee.
PRET DRAM controller: Bank privatization for
predictability and temporal isolation. In Proc. of the
Conference on Hardware/Software Codesign and
System Synthesis, pages 99–108. ACM, 2011.

[7] C. Rochange, S. Uhrig, and P. Sainrat.
Time-Predictable Architectures. ISTE Wiley, 2014.

[8] S.Abbaspour, A. Jordan, and F. Brandner. Lazy
spilling for a time-predictable stack cache:
Implementation and analysis. In Proc. of the
International Workshop on Worst-Case Execution
Time Analysis, pages 83–92. OASICS, 2014.

[9] M. Schoeberl, P. Schleuniger, W. Puffitsch,
F. Brandner, C. Probst, S. Karlsson, and T. Thorn.
Towards a Time-predictable Dual-Issue
Microprocessor: The Patmos Approach, volume 18,
pages 11–21. OASICS, 2011.

[10] T-CREST. Report on architecture evaluation and
WCET analysis. Technical report, 2013.

16

ASLA: Adaptive System Level in AUTOSAR

Amel BELAGGOUN
CEA LIST-Paris

LISE Labs,Point courrier 174
Gif-sur-Yvette,91191 France
amel.belaggoun@cea.fr

Ansgar RADERMACHER
CEA LIST-Paris

LISE Labs,Point courrier 174
Gif-sur-Yvette,91191 France

ansgar.radermacher@cea.fr

Valerie ISSARNY
Inria Paris-Rocquencourt
78153 Le Chesnay,France
valerie.issarny@inria.fr

ABSTRACT
This paper presents an initial approach towards making AU-
TOSAR dynamic starting from the application layer down
to the operating system level (task model and RTE)(i.e.
extending AUTOSAR ECU Software architecture) and de-
scribes ASLA, which is the framework that provides tasks-
level adaptation techniques in AUTOSAR.

1. INTRODUCTION AND MOTIVATION
Nowadays, the complexity of the next generation of au-

tomotive embedded systems such as Fully Electric Vehicles
(FEVs) is increasing due to the growing number of function-
ality (more than 2.500 functions such as power trains, steer-
ing or braking systems, “X-by-wire” systems etc.). These
systems are by nature, real-time. Moreover, most of them
work under several resource constraints, due to cost, space
and energy limitations. In addition, they are running in
highly dynamic environments. Combining real-time features
in tasks with dynamic behavior, together with cost and re-
source constraints may create new problems to be addressed
in the design of such systems. Using the classical design ap-
proaches adopted in hard real-time systems, such as WCET
analysis to guarantee timeliness, for example, is no longer ac-
ceptable in highly dynamic environments because it would
waste resources and increase costs [5]. Instead of allocating
resources for the worst case, there is a need for smarter tech-
niques to sense the current state of environment and react
accordingly, which means, to cope with dynamic environ-
ments, automotive systems need to be adaptive; that is, they
must be capable of changing their structure and/or their be-
havior to better reflect their current situation or in order to
keep the system requirements at a desired level; if this is
not possible, degrade it in a controlled way. Besides dealing
with problems generated by adaptation in terms of meeting
real-time constraints despite the system evolution; system
reliability remains an important factor to be investigated
within embedded systems due to their interactions with the
physical word. Although, there has been much research on
building reliable distributed real-time systems [3][7], a trend
towards more complex features in a system with cost and
resource constraints poses a major challenges in developing
such a system. In order to address the above challenges we
need to study the feasibility of applying adaptation tech-
niques in real-time embedded systems. Specifically, in au-
tomotive systems it would be very useful to support adap-
tation in order to increase the availability and reliability
of software-based applications without additional hardware
costs. Currently AUTOSAR[1]– The standard architecture
for automotive systems– has no support for runtime adap-

tation. Making it adaptive requires specific support at dif-
ferent levels of the software architecture. The most impor-
tant component affecting adaptivity is the Operating Sys-
tem (OS), but some flexibility can also be introduced in the
runtime environment(RTE). Therefore, we propose a layer
called ASLA, which is used for task mapping, bandwidth
allocation and adaptation for mixed-criticality distributed
systems. The novelty of our approach is the capability to
support the adaptation of applications with soft and hard
real-time requirements (mixed) while respecting timing and
safety requirements in AUTOSAR.

Overcoming AUTOSAR’s limitations with ASLA:
ASLA provides the ability to dynamically adapt the sys-
tem, such as adding a new application or moving an existing
application to a different ECU. In AUTOSAR, the system
configuration is by design static: the AUTOSAR RTE is
configured at design-time for specific ECUs and partly gen-
erated based on the requirements of the Software Compo-
nents(SWC). A reconfiguration of the system, such as adding
an application or moving an application from one ECU to
another, cannot be done dynamically at runtime. ASLA
extends AUTOSAR in two ways. It changes the schedul-
ing policy from a fixed-priority (assigned to tasks at design
time) to a dynamic preemptive policy based on EDF and
CBS schedulers to guarantee mixed critical requirements. It
also contains RTE extension that supports the runtime ap-
plication migration between ECUs in response to both antic-
ipated changes caused by the environment, such as network
connectivity, as well as unexpected failures in both software
and hardware. The deployment and re-configuration of an
application onto ASLA is based on the work of [15], which
uses a Tabu Search based meta-heuristic to search design
space exploration to give the best task allocations and band-
width allocation. Unlike the existing approaches [10, 18],
ASLA explicitly introduces the concept of runtime adapta-
tion in mixed-criticality applications in automotive systems.

Contribution. This paper presents the design of a real-
time adaptive distributed architecture, ASLA, to provide
task-level adaptation techniques in AUTOSAR.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes the background, the scope and require-
ments needed to understand the proposed approach. Section
3 presents our approach and the architecture of ASLA. Sec-
tion 4 presents the related work. We state our conclusion
and future work in Section 5.

2. BACKGROUND AND DEFINITIONS
Before delving into the approach, it is important to clarify

the scope and the requirements that need to be addressed

17

with our solution. We use Kiviat diagrams [16] to show
visually the characteristics of our solution (Fig.1) and the
requirements we consider for adaptive automotive systems
(Fig.2). These diagrams provide developers of automotive
software an easy way of viewing the characteristics of their
applications. The dimensions represent axes of the Kiviat
diagrams and characteristics of the dimensions represent the
set of properties to be met by our solution (i.e. the red
bullets).

2.1 The scope of our Research
The adaptation Model. The adaptation may typically

be synchronous and/or asynchronous with respect to the
execution of applications. In the synchronous case, the ap-
plications synchronize their execution, and new tasks (ac-
tions) are introduced only after all applications have fin-
ished performing the actions specified in the initial configu-
ration. The schedulability analysis of the adaptation is thus
not required, because there is no interference between tasks
before and after the adaptation (i.e. in the new system con-
figuration). On the other hand, in the case of asynchronous
adaptation, all the applications start changing their configu-
ration as soon as they receive an adaptation trigger without
considering the behavior of the other applications. As a re-
sult, actions of the initial system configuration run concur-
rently with the new ones during the transition, which calls
for schedulability analysis.

Promptness. Adaptation is well suited for systems that
require reactive behavior, there is no need to wait until an
idle period or slack before performing such a change as in
Tindell’s model [17] or at the end of cycles like in some
approaches based on cyclic executive scheduling [14]. The
adaptation may be classified in three different categories
in the time domain: (i) time-based adaptation: These are
adaptations where we know the arrival time of the adapta-
tion request in advance. (ii) event-driven adaptation: These
are adaptations triggered by events rather than time. We
don’t know exactly when they happen.(iii) irregular event-
driven adaptation: These are adaptations when no predic-
tion can be made about the arrival time of the adaptation
request. An example of this type is a system fault. The
system may change its configuration and migrate to a de-
graded one where not all the functionalities are provided. In
our work, we consider all three types of adaptation.

Scheduling policy. The use of dynamic priorities scheme
suits better with systems running in highly dynamic envi-
ronments [14][9].

Scheduling algorithm. Combining two scheduling mech-
anisms CBS and EDF has proven its efficiency to solve the
problem of temporal isolation due to the integration of soft
and hard real-time applications on the same platform [9][15].

Architecture. Distributed architecture. In our work a
real-time distributed system is defined to be a system with
multiple autonomous processing units (ECUs) cooperating
together to achieve a common goal. We use the term dis-
tributed architecture to refer to loosely coupled architec-
tures where message passing is required (full connectivity is
assumed between ECUs i.e. each of the ECUs is connected
to each other).

Timing requirement criticality. In our solution we
are dealing with mixed-criticality systems, to the best of our
knowledge no one has applied runtime adaptation consider-
ing both soft and hard real-time constraints in AUTOSAR.

Scheduling

Algorithm

Timing requirement

Criticality

Architecture

Promptness
Adaptation

Model

Scheduling

policyEDF

CBS

Distributed

Dynamic priority

Time-basedasynchronous

synchronous

Soft
Hard

even-driven

irregular

even-driven

Figure 1: The scope of our Research.

2.2 Definition of our Adaptation Requirements
(R1) Timeliness: the timeliness requirements of an adap-

tation characterize the time constraints under which the
adaptation is executed. Hard real-time constraints require
the execution of adaptation within a firm deadline. Adapta-
tions executed under soft real-time constraints minimize the
adaptation execution and blackout time (which is the time
the application is unavailable due to state transfer and re-
configuration). Unbounded adaptations are executed with-
out any time bound[6].

(R2) Consistency: preserving the system consistency
and leaving the system under change in a correct state after
adaptation are two major requirements that must be ensured
when performing adaptation of the running system. Many
adaptation approaches freeze the entities to be reconfigured
into an adaptation safe state called quiescent state [8].

(R3) Flexibility: The dynamic behavior of real-time
systems requires executing applications with certain flexibil-
ity requirements in which the temporal properties and the
number of applications vary during runtime. That means,
the tasks of flexible application provide implementations
that can adapt their execution to the available processing
resources. These tasks have variable period and/or may de-
mand variable WCET (i.e. stochastic [9]). So executing
flexible applications, prevents the use of an efficient static
temporal partitioning of the processing time. A static tem-
poral partitioning that lasts over the entire lifetime of a sys-
tem would result in an oversized system. Hence, in order to
efficiently use the processing time, the flexibility of applica-
tions and possible demand changes during runtime have to
be considered during runtime analysis.

(R4) Adaptation trigger: adaptation can be triggered
either internally due to the monitoring infrastructure or ex-
ternally ; requested from an outside entity, for example the
user. Furthermore , adaptation triggers may arrive syn-
chronously (i.e. at specific time) or asynchronously (i.e.
with unknown arrival pattern). Timelines

Type of adaptation

Flexibility

Consistency

Adaptation triggers
Soft

Hard

No real-time

Internal

External

Structure

Behavior Parameter

Resource

Figure 2: Requirements for Runtime Adaptation.

(R5) Type of adaptation: the type of adaptation de-
fines what is being reconfigured. This type can be either,
Resource adaptation(i.e.allocation of resources dynamically
based on observed conditions), or Software adaptation which

18

includes three categories: (i) structural, (ii) behavioral and
(iii) parameter. The first one (i) structural adaptation, changes
the actual architectural parts of an application, e.g., by re-
moving a SWC, introducing a new one or replacing /up-
dating an existing SWC with another newer version. The
second category (ii) behavioral adaptation allows changes of
the behavior of the application and the last category (iii) pa-
rameter adaptation involves modifying variable values that
determine program behavior.

3. TOWARDS ADAPTIVE AUTOSAR
We present an approach that provides an adaptive solu-

tion for AUTOSAR[1]. The approach is based on monitoring
various applications distributed on different ECUs to detect
the need for adaptation at the application and the system-
level (i.e. the Basic SoftWare(BSW)) while maintaining
the system consistency [8], which means the system under
adaptation must be left in a correct state after adaptation.

3.1 The ASLA Architecture
Fig.3 provides an overview of ASLA‘s overall design. Ev-

ery ECU that supports adaptation through ASLA layer con-
sists of a real-time OS with EDF and CBS scheduling poli-
cies, an Adaptive SWC that is responsible for reconfiguring
applications running on the system, RTE, and application
layers. The real-time OS is responsible for HW abstraction,
communication, scheduling and executing tasks in real-time.
We assume that the underlying HW is a fail-silent system
and the communication network is fault-tolerant. Our ap-
plication layer consists of a set of SWCs (similar to AU-
TOSAR’s) and the new Adaptive SWC which can be dis-
tributed over several ECUs. The RTE provides a communi-
cation abstraction to SWCs. Unlike AUTOSAR, our RTE
extension contains functions to support adaptation. These
functions are managed by the Adaptive SWC (more pre-
cisely by the Reconfiguration Manager (RM)) which also
communicates with the others Adaptive SWCs running on
the different ECUs to make one of the adaptation actions
such as: adding, deleting or updating application. When a
new application is being added, the mapping between the
application’s SWCs and the ECUs is given to the RM, then
each RM analyzes the mapping and renews the RTE’s func-
tions.

Figure 3: The ASLA architecture.
The ASLA layer is composed of an Adaptive SWC (one on

each ECU) and plugin offering a task execution container.
This plugin enables any task launched on ASLA layer to
be periodically executed. The adaptive component has a
coordination-based architecture. One Adaptive SWC acts
as a coordinator of the other Adaptive SWCs which are
responsible for handling tasks on each ECU and monitor-
ing a health vector. The latter contains all Non-Functional
Requirements(NFRs) needed for the adaptation such as the
ECU’s processor utilization, resources, QoS, HW NFRs..etc.
All operational ECUs compute their resources and processor

utilization in form of a health vector at a fixed time period
and share their health vector with each other. This provides
each ECU a consistent view of the available resources and
utilization on the other nodes. Since our Adaptive SWC has
a coordination based-architecture, we define a management
protocol between the different Adaptive SWCs inspired by
[11]. However, we differ from them in the sense that our pro-
tocol is much more simpler and it is used for managing the
process of an adaptation in distributed real-time systems.
In our protocol, all the Adaptive SWCs including the coor-
dinator broadcast messages to each other. The coordinator
can detect the failure of the others Adaptive SWCs by a lack
of heartbeat messages. The major components of ASLA are
described below.

A. The Adaptive SWC. As illustrated in Fig 3, an
Adaptive SWC is composed of a monitor,a Mapping Man-
ager (MM) and a Reconfiguration Manager(RM). The mon-
itor is responsible for monitoring events that trigger the
adaptation. The MM offers a dynamic deployment of tasks
on the ECUs and the RM can automatically reconfigure
tasks inside/or between the different ECUs :

• The Monitor. The monitor periodically sends mes-
sages to other ECUs in the system via the network1.
The monitor allows ASLA to agree on the availability
of each ECU. Any adaptation trigger received by the
application during its execution may invoke the moni-
tor which sends a message to the RM in order to adapt
the application. The loss of a message for two consec-
utive cycles means that the ECU is no longer alive and
the adaptation needs to be triggered to accommodate
the desired changes.

• The Mapping Manager. The MM offers an auto-
matic deployment of tasks on ECUs. We use TSMBA
(Tabu search Mapping and Bandwidth Allocation)[15]
as a base line algorithm for our work to do the alloca-
tion which provides a comprehensive solution that allo-
cates mixed critical application to a distributed hetero-
geneous architecture and reserves processor bandwidth
for guaranteeing timing requirements. We propose the
extension O-TSMBA (Operational chains-TSMBA) a
variant of TSMBA that supports task dependencies
(i.e. pipeline tasks model). The MM takes as input
the application description (an initial system configu-
ration file) and changes the current mapping when it’s
necessary to do so. Changes of the allocation can oc-
cur due to the adaptation or in case of one or several
ECUs failures.

• The Reconfiguration Manager. The RM is a spo-
radic task that gets triggered upon the reception of an
adaptation trigger (requests for adding new tasks, re-
quests for migrating failed tasks/and or failed ECUs,
replacement of tasks with an improved version and re-
moving tasks).

B. ASLA Plugins. All applications will run on the top of
ASLA plugins. ASLA plugins support the mechanisms for
task reconfiguration and bandwidth allocation (i.e.TSeRBA
algorithm“Tabu Search Reconfiguration and Bandwidth Al-
location”) and also enables tasks to have guaranteed and
protected access to required processing resources during re-
configuration in a timely manner.
1The Network is beyond the scope of this paper. We assume
a synchronous communication network

19

3.2 ASLA Development Process
Our process for developing automotive software in compli-

ance with AUTOSAR standard is shown in Fig.4. It starts
with an application description, in terms of a SWC archi-
tecture, dependencies between SWCs, real-time constraints,
HW resource requirements and other information needed in
the vehicle. In our approach we are interested in mixed crit-
ical applications with soft and hard real-time requirements.
We consider that each SWC contains one runnable and is
represented by one AUTOSAR task. We construct an op-
erational chain OP which is composed of periodically exe-
cuting runnables generating data and events regularly that
flow through multiple runnables (i.e. they are connected
by data flow or/and control flow). OP correspond to the
AUTOSAR execution model (see Fig4- wg1). We distinguish
chains with soft and hard timing requirements (OPSoft and
OPHard). We assume that the initial mapping of runnables
to AUTOSAR tasks is given at design time similarly to AU-
TOSAR and all runnables are executed periodically within
the context of an AUTOSAR Task (see Fig4- wg2). At this
step we will have an initial solution which is not necessary
schedulable and it is given as input to the task mapping al-
gorithm O-TSMBA which we designed for the operational
chain model. The output of O-TSBMA algorithm will be
used as input for TSeRBA (i.e. a configuration schedulable
and tagged optimized (see Fig4- wg3)). TSeRBA algorithm is
used for task mapping, bandwidth allocation and reconfig-
uration for mixed-criticality distributed systems. The run-
time support to AUTOSAR will be realized by TSeRBA as
it allows the dynamic allocation of SWCs with both hard
and soft real-time constraints as well as supports the inser-
tion, the deletion and the migration of SWCs at runtime
(see Fig4- wg4).

Application
Description

Construct
operational

chains
1

Construct tasks

TSeRBA

2

Level 1 mapping
@ design time

Level 2 mapping and
reconfiguration
@ run-time

Deployment

Reallocation
& reconfiguration5

4

3

An initial configuration which

is schedulable & tagged <optimized>

i.e. AUTOSAR Tasks

i.e. AUTOSAR execution

model (runnables and messages)

CBS

CBS

RTE: The proposed tasks

adaptation mechanisms

…

EDF
CBS

CBS

CBS

ECU HW

RTE

Adaptive

SWC

SWC

(app1)

SWC

(app2)

EDF
CBS

CBS

CBS

ECU HW

RTE: The proposed tasks

adaptation mechanisms RTE

Adaptive

SWC

SWC

(app1)

SWC

(app2)

EDF
CBS

CBS

CBS

ECU HW

RTE

Adaptive

SWC

SWC

(app1)

SWC

(app2)
Monitor

Mapping
Manager

Reconfiguration
Manager

...
Plugin PluginPlugin Plugin Plugin Plugin PluginPluginPluginNetwork

abstraction

Adaptive SWC
Plugin

RTE: The proposed tasks

adaptation mechanisms

ASLA layer ASLA layerASLA layer

RTE: The proposed tasks

adaptation mechanisms

Figure 4: ASLA Development Process
4. RELATED-WORK

Runtime adaptation in real-time systems have been ex-
tensively studied in[4, 18, 7]. Unlike existing works, ASLA
provides a framework to support runtime adaptation with
taking into account schedulability analysis and task alloca-
tion for mixed-criticality applications in AUTOSAR. Except
SAFER[7] which can be used as a complementary solution
for our proposal for the dependability point of view. Another
well researched topic in real-time systems–mode change con-
cept, which has a close relationship with the adaptation. In
order to guarantee timing requirements in the presence of
changes in the system several approaches have been pro-
posed and focused on mode change protocols (see the sur-
vey of [14] for more details),[12], which can be potentially
used as an extension to ASLA. The authors of [13] proposed
SIRAP, a protocol for synchronization in a hierarchical real-
time scheduling framework. Their approach is relevant to
our case because we are using a server-based technology to
schedule AUTOSAR SWCs. However, we have a different

focus; we are tackling the challenge of making runtime adap-
tation in AUTOSAR.

5. CONCLUSION AND FUTURE WORKS
Runtime adaptation in embedded real-time systems is a

topic expected to grow in the coming years, gaining partic-
ular moment in the context of designing FEVs. Yet there
is a lack of techniques and tools for performing such adap-
tation. We presented ASLA, a novel framework that sup-
ports task-level reconfiguration features in AUTOSAR. We
have built an experimental platform using three ARM-based
STM32F4Discovery boards, an Open-source AUTOSAR im-
plementation, ERIKA-OS[2] served as the BSW. A CAN bus
communication was established between the three ECUs and
currently we are focusing on the implementation of the al-
gorithms behind ASLA framework to demonstrate the the-
oretical ideas. As future work, ASLA will be validated by
means of a real case study from the SafeAdapt project. We
will measure the overhead of the adaptation mechanisms, in
particular the impact on timeliness.

Acknowledgments: We would like to thank Robert Davis
for the interesting discussions about this work.

6. REFERENCES
[1] Autosar,http://www.autosar.org/.

[2] Erika entreprise,http://erika.tuxfamily.org/drupal/.

[3] J. Balasubramanian, A. Gokhale, A. Dubey, F. Wolf, C. Lu,
C. Gill, and D. Schmidt. Middleware for resource-aware
deployment and configuration of fault-tolerant real-time
systems. In RTAS, pages 69–78, Los Alamitos, CA, USA, 2010.

[4] B. e. a. Becker. Model-based extension of autosar for
architectural online reconfiguration. MODELS’10, pages 83–97,
Berlin, Heidelberg, 2010.

[5] G. Buttazzo and L. Santinelli. Adaptive mechanisms for
component-based real-time systems”. In NASA/ESA
Conference(ASH 2015), June 15-18, Montreal, QC, Canada.,
pages 1–8, 2015.

[6] S. Fritsch, A. Senart, and D. C. Schmidt. Time-bounded
adaptation for automotive system software. ICSE ’08, pages
571–580, New York, NY, USA, 2008.

[7] J. Kim, G. Bhatia, R. Rajkumar, and M. Jochim. SAFER:
system-level architecture for failure evasion in real-time
applications. In RTSS ’12, San Juan, PR, USA, December
4-7, 2012, pages 227–236, 2012.

[8] J. Kramer and J. Magee. Self-managed systems: An
architectural challenge. FOSE ’07, pages 259–268, Washington,
DC, USA, 2007.

[9] L.Abeni and G. Buttazzo. Stochastic analysis of a reservation
based system. In IPDPS’01, pp.946-952, 2001.

[10] H. Martorell, J.-C. Fabre, M. Roy, and R. Valentin. Improving
adaptiveness of autosar embedded applications. SAC ’14, pages
384–390, New York, NY, USA, 2014.

[11] M. Mitzlaff and Kapitza. Enabling mode changes in a
distributed automotive system. CARS ’10, pages 75–78, New
York, NY, USA, 2010.

[12] V. Nelis and B. e. a. Andersson. Global-edf scheduling of
multimode real-time systems considering mode independent
tasks. ECRTS’11, pages 205–214, Washington, DC, USA, 2011.

[13] T. Nolte, I. Shin, M. Behnam, and M. Sjödin. A
synchronization protocol for temporal isolation of software
components in vehicular systems. 5(4):375–387, November 2009.

[14] J. Real and A. Crespo. Mode change protocols for real-time
systems: A survey and a new proposal. Real-Time Syst.,
26(2):161–197, Mar. 2004.

[15] P. K. Saraswat, P. Pop, and J. Madsen. Task mapping and
bandwidth reservation for mixed hard/soft fault-tolerant
embedded systems. RTAS ’10, pages 89–98, 2010.

[16] K. W. K. T. software empiricist. SIGMETRICS Perform.
Eval. Rev., 2(2), 1973.

[17] K. Tindell, A. Burns, and A. Wellings. Mode changes in
priority preemptively scheduled systems. In RTSS’92, USA,
pages 100–109, 1992.

[18] C. Zeller, Marc; Prehofer. Timing constraints for runtime
adaptation in real-time, networked embedded systems. SEAMS
’12, pages 73–82, 2012.

20

Towards Utilizing Reconfigurable Shared Resources
in Multi-Core Hard Real-Time Systems

Luca Pezzarossa
lpez@dtu.dk

Martin Schoeberl
masca@dtu.dk

Jens Sparsø
jspa@dtu.dk

Department of Applied Mathematics and Computer Science
Technical University of Denmark

Kongens Lyngby, Denmark

ABSTRACT
Dynamic partial reconfiguration (DPR) of FPGAs allows
the reconfiguration of selected areas of an FPGA after its
initial configuration, while the remaining part of the sys-
tem continues to operate without interruption. Hard real-
time systems are a class of systems whose temporal behav-
ior has to be completely predictable. Our research explores
the use of DPR of FPGAs in the context of hard real-time
multi-processor systems for embedded applications, target-
ing the T-CREST multi-core platform. This paper provides
an overview and discusses the challenges related to the use of
DPR to share reconfigurable resource in a time-predictable
manner. It presents an approach to the application of DPR
in multi-core hard real-time systems and proposes two mod-
els to describe the effect of DPR on the software tasks exe-
cution and scheduling. Related works, plans for future eval-
uation and a preliminary test are also presented.

1. INTRODUCTION
Dynamic partial reconfiguration (DPR) is an emerging

concept in the FPGA industry that allows the reconfigu-
ration of portions of the FPGA, while the rest of the device
continues to operate without interruption [1, 2, 3].

Hard real-time embedded systems are a class of systems
characterized by strict timing constraints on the execution
time of the tasks. These systems are used for safety-critical
applications where a failure to respond in time may lead
to catastrophic consequences (e.g., flight electronics, wind
turbine control systems, medical devices, factory automa-
tion systems, etc.). The design process of such systems,
addressing multi-core architectures instead of single proces-
sor architectures, is more complicated and challenging due
to the fact that the temporal behavior has to be completely
predictable and analyzable.

For multi-core hard real-time embedded systems, which
are mainly used in professional or high-end applications, the
development and the fabrication cost of an ASIC is typically
prohibitive, since it is not possible to amortize the develop-
ment costs over the production volume. Therefore, FPGAs
usage is preferable for this class of applications. FPGAs
are less efficient than ASICs, but this can be compensated
for by shorter development time and increased flexibility.
DPR brings this flexibility even further by enabling run-time
changes in the hardware.

Our research investigates the usage of FPGAs’ DPR in
the context of multi-core hard real-time systems. It tar-
gets the existing platform T-CREST [4] and aims to sup-

plement it with the DPR feature. T-CREST is a homoge-
neous multi-core platform for embedded hard real-time ap-
plications especially optimized to simplify static worst-case
execution time (WCET) analysis. Our hypothesis is that
DPR can provide substantial benefits by allowing dynamic
hardware modifications. More specifically, we hypothesize
that a system which uses a DPR approach can be more ef-
ficient in terms of size, power consumption and cost than
an equivalent static version, while maintaining comparable
computational performance.

This paper provides an overview and discusses the chal-
lenges related to the use of DPR to share reconfigurable
resources between software tasks in a time-predictable man-
ner. More specifically, it contributes (i) by presenting an
approach to the application of DPR in multi-core hard real-
time systems and (ii) by proposing two models to describe
the effect of DPR on the tasks execution and scheduling. Re-
lated works, plans for future evaluation and a preliminary
test are also presented.

This paper is organized as follows: Section 2 provides gen-
eral background about DPR by presenting the state-of-the-
art, the potential benefits and the limitations of the cur-
rent FPGA technology. Section 3 presents a classification of
DPR with the relative configuration latencies and proposes
two formulated models for DPR feature in hard real-time
systems. Section 4 describes our plans for evaluation and a
preliminary test utilizing the T-CREST platform. Section 5
briefly presents related works and finally Section 6 concludes
the paper.

2. DYNAMIC PARTIAL
RECONFIGURATION OF FPGAS

Dynamic partial reconfiguration (DPR) allows the modi-
fication of an operating FPGA design by loading a partial
configuration file (bit-file), while the remaining part of the
system continues to operate without interruption. After the
initial configuration of the FPGA, partial bit-files can be
loaded into the FPGA to modify selected regions, without
compromising the integrity and the functionality of those
parts of the device that are not being affected by the recon-
figuration.

Therefore, a system that uses DPR can be conceptually
considered as divided in two main parts: a static part and
a dynamic part. The static part is configured only once at
boot-time with a full bit-file. The dynamic part, which may
consist of several independent reconfigurable regions, can be
reconfigured multiple times during run-time with different

21

static part

partial

bit-files

FPGA

dynamic part

(two reconfigurable regions)

A1

A2

An

B2

Bm

A

B

B1

Figure 1: A FPGA divided into a static and a dy-
namic part (two reconfigurable regions).

partial bit-files. Figure 1 shows a FPGA divided into a static
part and a dynamic part, where the dynamic part consists of
two non-topologically-connected reconfigurable regions (A
and B). For every region, a partial bit-file can be loaded
from a set (e.g., A1, A2, ..., An) without interfering with the
functionality of the static part.

The use of DPR allows the creation of systems with a
very high level of flexibility since reconfigurable regions can
be dynamically reused by realizing the functionality that
is needed at any point in time. This makes more efficient
usage of the FPGA hardware resources, leading to a reduc-
tion of the FPGA size, with consequent reduction of power
consumption and cost. Moreover, a blank (empty) partial
bit-file can be loaded into a temporarily not used reconfig-
urable region in order to reduce the power consumption to
the minimum.

Using DPR to obtain these benefits increases the com-
plexity of the design process and of the hardware design
itself. The design flow performed with the commercial tools
is more articulated and it requires additional steps to gen-
erate the partial bit-files. For instance, the definition of the
physical areas on the FPGA chip where the reconfigurable
regions must be placed and the specification of dedicated
timing constrains for the reconfigurable regions. Something
that is not required for standard non-reconfigurable design.

From a hardware point of view, additional logic is needed
in the borders between the static part and the dynamic part
in order to insulate the reconfigurable regions during recon-
figuration. Moreover, a hardware controller is also required
to manage the reconfiguration process and to move the par-
tial bit-file from the memory where they are stored (on-chip
block-RAM or off-chip memory) to the FPGA’s configura-
tion memory.

The next section addresses this design challenges keeping
in mind that, since we target multi-core platform for hard
real-time systems, the time behavior has to be completely
predictable. Therefore, also the DPR approach must be per-
formed in a time-predictable manner and be completely an-
alyzable.

3. APPROACH AND MODELS
The main idea is to share the dynamic part of the FPGA

between the resources used by one or more processors of
the platform for a limited period of time (e.g., hardware
accelerators, co-processors, I/O units, etc.) or to reconfigure
part of the platform (e.g., processors or sections of them,
networks-on-chip, etc.) to dynamically adapt the hardware

R

CPU
N
I

R

CPU
N
I

R

CPU
N
I

R

CPU
N
I

R

CPU
N
I

R

CPU
N
I

R

CPU
N
I

R

HW

acc.
N
I

R

I/O
N
I

HW

acc.

Colors legend

HW

acc.

Fine grain DPR

Medium grain DPR

Coarse grain DPR

Figure 2: Example of the three DPR classes in a
network-on-chip-based multi-core platform.

to the actual needs of the software tasks running on it.
In this section we address how to perform this. First we

identify 3 classes of DPR, then we present the interfaces
available for invoking DPR, we discuss latency aspects of
these and finally we propose two models for the DPR feature
in hard real-time system.

3.1 Classes of DPR
In a multi-core platform, such as T-CREST, we have iden-

tified three possible classes of DPR depending on the size of
the reconfigured area: fine grain, medium grain, and coarse
grain DPR. An example of the DPR classes is shown in
Figure 2, where the three granularities are represented in
different colors.

We define the DPR as fine grain when the area to be
reconfigured is very small, in the order of hundreds of FPGA
logic cells (LCs). An example of fine grain reconfiguration
is the application of minor changes to a CPU architecture in
order to modify, during run-time, its instruction set (shown
in red in Figure 2).

A medium grain DPR involves an area in the order of
thousands of LCs. An example is a reconfiguration of an
entire intellectual property of the platform, such as CPUs,
small stateless hardware accelerators, etc. (shown in green
in Figure 2).

Finally, a coarse grain DPR involves a large area of the
FPGA, in the order of tenths of thousands of LCs. An ex-
ample of this class is a set of stateful hardware accelerators
for compute-intensive operations (fast Fourier transform, en-
cryption/decryption, etc.) to be swapped into large recon-
figurable regions and connected to a subset of CPUs with a
dedicated network-on-chip or a shared bus (shown in yellow
in Figure 2).

Since the reconfiguration time depends on the amount of
LCs to be reconfigured, it is immediately clear that a fine
grain DPR is very fast. On the contrary, a coarse grain DPR
is a relatively slow process.

3.2 Interfaces and Reconfiguration Latencies
For XILINX FPGAs, DPR can be performed through dif-

ferent interfaces. In this paper we mention only the two
interfaces that we have considered to use: the internal con-
figuration access port (ICAP) and the SelectMap interface.

The ICAP is a primitive found in XILINX FPGAs. It is
an internal interface on the FPGA fabric that can be ac-
cessed by the hardware implemented on the FPGA itself
and it provides direct access to the configuration memory.

22

Table 1: Calculated reconfiguration latencies for the
three classes of DPR for a XILINX Virtex-6 FPGA.

Class of # of Bit-file Reconfig.
DPR CLBs size latency

Fine grain 150 45 kB 110 µs
Medium grain 2 000 680 kB 1.5 ms
Coarse grain 10 000 2.9 MB 7.3 ms

It requires the instantiation of an ICAP controller and the
logic to drive the interface itself.

The SelectMap interface is a fast external reconfiguration
interface that also provides direct access to the configuration
memory. It dedicates I/O pins for a bi-directional data bus
and control signals.

For a XILINX Virtex-6 FPGA, both interfaces have a
maximum data width of 32 bits and a maximum frequency
of 100 MHz, hence the maximum transfer speed that can be
reached to load a partial bit-file is 3.2 Gb/s. Table 1 shows
some calculated values of reconfiguration latencies for the
three classes of DPR, based on the aforementioned transfer
speed. CLB stands for configurable logic block of XILINX
FPGAs. The reconfiguration latency is the time interval
needed to load a partial bit-file in a reconfigurable region.

3.3 DPR Models
Considering the granularity of the DPR and the associ-

ated configuration latencies we have formulated two differ-
ent models to describe the effect of DPR on the tasks execu-
tion and schedule: a task-level DPR model and a mode-level
DPR model.

Task-Level DPR Model
Observing the reconfiguration latencies shown in Table 1 we
can safely assume that the latency for fine grain DPR is
smaller than (or comparable to) the WCET of a software
task (maximum possible duration of a task). Therefore, the
effect of DPR can be modelled by associating the reconfig-
uration latency to the tasks to which the reconfiguration is
related. In other words, the tasks that uses reconfigurable
resources need to include the reconfiguration latency in their
WCET before the task set is scheduled.

As an example, Figure 4(a) shows a static schedule period
with three tasks T1, T2 and T3 sharing a reconfigurable
region. Every time a task is started or resumed, it needs to
reconfigure the dynamic part in order to have available the
hardware resources to perform its operation. The solid color
at the beginning of each task represents the reconfiguration
delay added to each task WCET. The last row of the diagram
shows how the reconfigurable region is shared between the
tasks.

Mode-Level DPR Model
Assuming the reconfiguration latency for coarse grain DPR
larger than the WCET of a software task, the reconfigura-
tion of this DPR class must be associated to an operation
mode change, where the system, during normal operation,
changes a subset of the executing tasks to adapt its behavior
to new environment conditions.

The graph in Figure 3 shows the operational mode changes
between three modes: M1, M2, and M3. Every mode con-
sists of a set of tasks and a set of resources (e.g., hardware

M1

M3 M2

MC31

MC13 MC21

MC12

MC32

MC23

Figure 3: Graph showing the operational mode
changes for three modes.

accelerators) implemented on the dynamic part of the design
that corresponds to a different operational scenario.

A reconfiguration associated with a mode change can be
modelled as a task that belongs to a mode change scenario
(e.g., MC12, MC21, etc. in Figure 3). A mode change sce-
nario consists of a set of task that need to be maintained
active in the transition between the old and the new mode
and a set of tasks that models the reconfiguration process.

As an example, Figure 4(b) shows a change between two
statically scheduled modes M1 and M2. M1 consists of the
tasks T1 and T2, while M2 consists of the tasks T1 and T3.
We assume that T2 and T3 need different resources to be
implemented on the shared reconfigurable region and that
the periodic execution of T1 cannot be suspended during the
mode change. We also assume that a task that continues its
execution through the mode change cannot reconfigure its
own resources. We can observe that during the mode change
scenario MC12 the task T1 continues to run and the task
Trec, which models the reconfiguration process, is executed.
The last row of the diagram shows how the reconfigurable
region usage changes between different modes. Also in this
case, the solid color represents the reconfiguration delay.

3.4 Final Remarks
The two models presented above, which are applicable to

different classes of DPR, are not exclusive. Fine, medium,
and coarse grain DPR can be present in the same architec-
ture and be modelled independently using the proper model.
However, since the current FPGA technology allows to re-
configure only one region at a time, interference between
tasks can occur and this must be taken into account during
the task scheduling. Utilizing the presented models to de-
scribe the effects of the DPR makes still possible to apply the
traditional shared resources scheduling protocol (e.g., PIP,
PCP, SRP, etc.) to properly share the reconfigurable regions
between the tasks. Finally, we mention that medium grain
DPR can be modelled with both methods depending on the
actual relation between the task WCET and the reconfigu-
ration latency. If the reconfiguration latency is smaller or
comparable than the task WCET, the task-level model can
be applied. Otherwise, the mode-level DPR model needs to
be used.

4. EVALUATION
We plan to evaluate our approach, models and design uti-

lizing the T-CREST platform. T-CREST is a homogeneous
multi-core platform for embedded hard real-time applica-

23

T1

T2

T3

recon.

region T1 T1T1 T1T2 T2 T2 T3 T3

t t+T

(a) Task-level DPR model.

T1

T2

T3

recon.

region T2 T3

t t+T’

M1 M2MC12

Trec

t+T’+TMC t+T’+TMC+T’’

(b) Mode-level DPR model.

Figure 4: Example of time diagrams for the task-level and the mode-level DPR models.

tions [4]. All features are optimized to simplify static WCET
analysis. The T-CREST platform contains several process-
ing cores, called Patmos [5], and it is supported by the
WCET analysis tool aiT [6] from AbsInt that allows to stat-
ically derive tight WCET bounds. T-CREST contains two
time-predictable networks-on-chip (NOCs): a time-division
multiplexing message passing NOC between the cores, called
Argo [7], and a memory tree NOC towards the shared ex-
ternal main memory.

We are currently developing an ICAP/SelectMap controller
that allows to load partial bit-files in a time-predictable
manner. Preliminary experiments have been carried out
targeting the XILINX Virtex-6 FPGA on the ML605 devel-
opment board. The tested architecture consists of a single
Patmos processor that manage a fine grain reconfigurable
region, using the ICAP/SelectMap controller to swap a sim-
ple I/O led driver between different configurations. The
test allowed to prove the functionality of the controller and
to collect some preliminary measurements regarding the re-
configuration latency. With a size of 40 configurable logic
blocks, and a bit-file size of 12.7 kB stored in block-RAM,
the measured reconfiguration latency is 35 µs.

Further evaluation is expected in the near future when the
ICAP/SelectMap controller and the software tools currently
under development will be completed and stable.

5. RELATED WORKS
The use of DPR in the context of hard real-time sys-

tems and of multi-processor platforms is largely unexplored.
However, we briefly mention two works addressing general
purpose non-real-time platforms that have been taken into
account in our research.

The ReCoBus-builder [8] is a FPGA design oriented frame-
work for component-based reconfigurable systems. It uses
DPR to generate systems with one or more reconfigurable
areas to be used by different hardware modules.

The LogiCORE IP XPS HWICAP [9] is an IP from XIL-
INX that enables an embedded microprocessor to read and
write the FPGA configuration memory through the ICAP
interface. This controller, although being widely used, is not
designed to be time-predictable. Hence, it is not suitable to
be directly used in our design.

6. CONCLUSION
This paper presented a preliminary exploration of the use

of FPGAs’ DPR in the context of multi-core hard real-time
systems. It discussed the challenges related to the use of
DPR and it presented an approach on how to use the DPR
feature to share reconfigurable resource in a time predictable
manner. The paper also proposed two models to describe
the effect of DPR on the tasks execution and scheduling.

7. REFERENCES
[1] L. Wang and F. Y. Wu. Dynamic partial

reconfiguration in FPGAs. In Proc. of IEEE Third
International Symposium on Intelligent Information
Technology Application, volume 2, pages 445–448, 2009.

[2] XILINX. UG702: Partial reconfiguration user guide.
Technical report, 2012. Online.

[3] ALTERA Corporation. QII51026: Design planning for
partial reconfiguration. Technical report, 2013. Online.

[4] M. Schoeberl et al. T-CREST: Time-predictable
multi-core architecture for embedded systems. Journal
of Systems Architecture, 2015. Accepted for
pubblication. Online at
http://www.jopdesign.com/doc/t-crest-jnl.pdf.

[5] M. Schoeberl, P. Schleuniger, W. Puffitsch,
F. Brandner, C. W. Probst, S.Karlsson, and T. Thorn.
Towards a time-predictable dual-issue microprocessor:
the Patmos approach. In Proc. of First Workshop on
Bringing Theory to Practice: Predictability and
Performance in Embedded Systems, pages 11–20, 2011.

[6] R. Heckmann and C. Ferdinand. Worst-case execution
time prediction by static program analysis. Technical
report. Online at http://www.absint.de/aiT WCET.pdf.

[7] E. Kasapaki et al. Argo: A real-time network-on-chip
architecture with an efficient GALS implementation.
Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 2015. Accepted for pubblication.
Online at http://www.jopdesign.com/doc/argo-jnl.pdf.

[8] D. Koch, C. Beckhoff, and J. Teich. ReCoBus-Builder -
a novel tool and technique to build statically and
dynamically reconfigurable systems for FPGAs. In
Proc. of International Conference on Field
Programmable Logic and Applications, pages 4629918,
119–124. Inst. of Elec. and Elec. Eng. Computer
Society, 2008.

[9] XILINX. DS586: LogiCORE IP XPS HWICAP
(v5.00a) product specifications. Technical report, 2010.
Online.

24

Regulation versus Flow Control in NoC for Hard Real-time
Systems: a Preliminary Case Study

Hamdi Ayed, Jérôme Ermont, Jean-luc Scharbarg, Christian Fraboul
Toulouse University - IRIT - ENSEEIHT

Toulouse, France
{hamdi.ayed2, jerome.ermont, Jean-Luc.Scharbarg, christian.fraboul}@enseeiht.fr

ABSTRACT
Many-core architectures are promising candidates for the de-
sign of hard real-time systems. Inter-core and core to exter-
nal memory or peripheral communications use the Network-
on-Chip (NoC). Such a NoC is typically composed of a set
of routers. Internal organization of routers (mainly buffers)
as well as flow control aspects impact NoC performances
and thus those of the many-core, including the Worst-Case
Traversal Time (WCTT) which has to be guaranteed for
hard real-time systems.

In this paper we study the impact of flow control aspects
on this WCTT. We consider two classes of NoC architec-
tures, representative of the trend in the many-core market:
Tilera Tile64-like NoCs where flow control is implemented
at the router level and KalRay MPPA 256-like NoCs where
flows are regulated at the source node level.

We compute flow WCTT for different configurations and
we show that there is no clear winner, since NoC perfor-
mances highly depend on flow features.

Keywords
Network-on-Chip, Flow control, Worst-case traversal time

1. INTRODUCTION
Many-core architectures are promising candidates to sup-

port the design of hard real-time systems. They are based on
simple cores interconnected by a Network-on-Chip (NoC).
Timing constraints, such as bounded delays, have to be guar-
anteed for hard real-time systems. Thus worst-case behavior
of the NoC is a key feature for such systems.

However, the initial motivation when designing NoCs was
to increase the average case throughput. NoCs can thus be
used in hard real-time systems using one of the following
approaches:

1. analysis of the Worst-Case Traversal Time (WCTT) of
flows on existing many-cores,

2. modification of the hardware so that no contentions
can occur by design, leading to straightforward WCTT
for flows.

Several NoC have been proposed based on the second ap-
proach [3, 4, 9]. However, none of these NoCs targeting hard
real-time constraints are available in commercially existing
many-core architectures, such as for instance the Tilera Tile
CPUs [10], the STMicroelectronics P2012/STHORM fab-
ric [8] or the KalRay MPPA [1]. In this work, we focus

on these commercially existing architectures, where NoC re-
lies on wormhole switching [7] and Round-Robin Arbitration
(RRA) within routers. Using wormhole switching, a packet
is divided in flow control digits (flits) of fixed size which are
transmitted one by one by routers. The header flit (i.e. the
first flit) contains the routing information that defines the
path for all the flits of the packet.

NoC implement flow control in order to control buffer oc-
cupancy. Two main strategies are considered in commercial
many-cores. The first one implements flow control in each
router: a packet cannot be forwarded if the next output port
is busy. The Tilera Tile64 [10] uses this strategy. The sec-
ond strategy implements flow regulation in source nodes, in
order to bound the traffic. The KalRay MPPA 256 [1] uses
this strategy.

The contribution of this paper is to evaluate the impact of
these two strategies on flow WCTT. This preliminary eval-
uation is based on two small case studies.

The rest of the paper is organized as follows. Sections 2
summarizes considered NoC features. Section 3 presents the
evaluation. Section 4 concludes and gives some direction for
future work.

2. DESCRIPTION OF TWO NOC ARCHI-
TECTURES

In this section, we describe two different NoC architec-
tures: Tilera Tile64 and KalRay MPPA 256. The first one
uses the classical credit based flow control. The second con-
sists in a source regulation of flows.

2.1 Overview of the Tilera Tile64
The Tilera Tile64 is composed of a grid of 64 tiles. Each

of them contains a processor engine (core), a private cache
and a crossbar switch. The tiles communicate by exchanging
packets through the embedded switch. To minimize the in-
terference and to maximize the performance, inter-tile com-
munication uses six independent networks. The traffic re-
lated to memory, caches, I/O and processors is transmitted
upon distinct networks.

The Tilera Tile64 uses classical wormhole switching: pack-
ets are split into several flits and are transmitted flit by flit
from the source to the destination tile. The first flit is called
the header flit and contains the destination address. When
the packet is granted to access to an output port, this out-
put port is locked until the last flit has successfully traversed
the switch. The flits follow the same path as the header flit.
When the output port is locked, the flits are stored into a
small sized (three flits) buffer of the input port, as shown in

25

Figure 1: Tilera Tile64 router [10]

Figure 2: KalRay MPPA 256 router [1]

Figure 1. When the output port is freed, the switch fabric
uses round-robin arbitration to ensure fairness. Thus, when
the transmission of a packet from an input port is termi-
nated, the transmission of a packet from another input port
can start.

Control flow uses a credit scheme: the output ports con-
tain a credit count corresponding to how many flits can be
stored into the input ports of the next switch. Each time a
flit is routed to the output port, the credit is decremented.
When the credit count is zero, the flits are blocked into the
input buffers. When an input buffer place becomes empty,
the credit of the corresponding output buffer (from the pre-
vious switch) is incremented.

2.2 Overview of the KalRay MPPA 256
The architecture of the KalRay MPPA-256 is different

from the one of the Tilera Tile64. It is composed of 16
processing elements (PE) which contain 16 cores each, and
two parallel networks-on-chip, one for the data (D-NoC) and
one for the control (C-NoC). The network topology is a 2D
torus.

D-NoC is dedicated to high bandwidth data transfers.
KalRay MPPA-256 uses flow regulation [6] at the source
node. This regulation is parametrized by a window length
(τ) and a bandwidth quota (β). At each cycle, the regulator
compares the length of the packet to send plus the number
of flits already sent during the previous τ cycles to β. If
not greater, the packet can be sent, a flit each cycle. Using
the network calculus theory, these parameters allow to de-
termine the capacity constraints of the links and the router
buffer sizes [1]. Consequently the NoC does not need control
flow mechanism.

Table 1: Case study 1: flows set description

Flow
Period
(cycles)

Length
(flits)

T-bound
(cycles)

K-bound
(cycles)

f1 1000 50 257 295
f2 500 100 256 295
f3 1000 50 278 304
f4 1000 20 278 317

On NoC routers, flows can arrive from different directions.
As shown in Figure 2, each direction has its own FIFO buffer
at the output port. In that way, flows can be blocked only
if they share the same output link. Round-robin is used to
determine which packet in the FIFO queues is granted to be
transmitted.

3. CASE STUDIES AND END-TO-END DE-
LAY ANALYSIS

The goal of this section is to compare the WCTT on Tilera
TILE64-like NoCs and KalRay MPPA 256-like NoCs. This
comparison is based on two case studies.

3.1 Case study 1

Figure 3: Case study 1: description

Figure 3 describes the first case study: a 2x2 Mesh NoC
with 4 periodic flows (Table 1) transmitted to core 4. To
compute WCTT for each flow, we use the Recursive Calcu-
lus [2] for Tilera NoC (T-bound) and Network Calculus [5]
for KalRay NoC (K-bound). In the rest of this section, we
illustrate these approaches for flow f1.

3.1.1 Tilera NoC network
Several approaches have been proposed for WCTT com-

putation for Tilera-like NoC architecture [2]. For this paper,
we use the Recursive Calculus (RC), which gives tighter re-
sults than Network Calculus (NC) [2]. Figure 4 illustrates
Recursive Calculus principle. For ease of presentation, it
shows a simplified version of the worst-case scenario deter-
mined by RC approach for flow f1. In this simplified version,
the size of each input buffer is equal to one flit and packets
size is 3 flits. This scenario can be easily generalized with
packets of arbitrary size and larger buffers.

In this scenario, f2 delays f1 on link l3. Thus, f1 is blocked
at R2 till the end of transmission of f2. f2 is delayed on link
l4 by the packet with the maximum size coming from R3

(l3 in Figure 4). Due to round robin scheduling, f1 is also
delayed by one packet coming from R3 (f4 in Figure 4). This
leads to the WCTT at the bottom of the the figure. Using

26

actual packet sizes of Table 1, we obtain d1e2e = 7 ∗ dsw + 2 ∗
L3/C + L2/C + L1/C = 257 cycles.

It should be noted that f3 is considered twice at l4, since
its packet size is larger than one f4. Obviously, such a sce-
nario is not feasible, due to f3 period. Thus RC approach
introduces some pessimism.

Figure 4: Case study 1: recursive calculus applica-
tion for flow f1 with Tilera NoC

3.1.2 KalRay NoC network
As presented in Section 2, flows are regulated at source

node level and no flow control is applied at router level.
Thus flits arriving in a router are stored in corresponding
output port buffers (allocated to their input link). A packet-
by-packet round robin scheduling is applied for each output
port.

In this paper we consider a classical network calculus ap-
proach [5] for the WCTT analysis of flows. In such an ap-
proach, each flow fi is modeled by an arrival curve αi which
overestimate its traffic. Each source node si or router out-
put port Rij is modeled by a minimum service curve βsi or
βRij

. In the case study in Figure 3, each flow fi is defined by

a period Ti and a packet length Li. Thus the arrival curve
of a flow fi is αi(t) = σi +ρi ∗ t. σi is the maximum burst Li

and ρi is the maximum long term rate Li/Ti. Arrival curves
of the flows in Figure 3 are:

α1(t) = α3(t) = 50 + 0.05 ∗ t
α2(t) = 100 + 0.2 ∗ t
α4(t) = 20 + 0.02 ∗ t

Concerning service curves, we assume that every link in
the NoC has a transmission rate of C = 1 flit

cycle
, the technical

latency of source nodes is negligible and the technical latency
of a router is equal to dsw = 1 cycle. Thus the overall service
curves for a source node si and a router output port Rij are:

βsi(t) = 1 ∗ t
βRij

(t) = max(0, 1 ∗ (t− dsw)) i ∈ {1, 2, 3, 4}

where dsw represents the overall router latency.
Source nodes implement a First Come First Served policy

while a round-robin scheduling is applied by router output

Figure 5: Case study 1: WCTT for flow f1 with
KalRay NoC

ports. In order to deal with both policies we apply the (pes-
simistic) blind multiplexing model [5]: when two flows f1
and f2 share an output port Rij implementing any schedul-
ing algorithm, the minimum service curve for flow f1 is:

β1
Rij

(t) = (βRij
(t)− α2(t))↑

where βRij
is the overall service curve offered by Rij and β↑

is the positive and non-decreasing upper closure defined as
(β)↑(t) = max(0, sup0≤s≤tβ(s)).

The WCTT computation for a flow f is based on the fol-
lowing result. When a flow f traverses two nodes Rij and
Rkl in sequence, offering service curves βRij

and βRkl
, re-

spectively, network calculus theory [5] establishes that the
concatenation of these two nodes offers the service curve
β1 ⊗ β2. β1 ⊗ β2(t) = inf0≤s≤tβ1(t− s) + β2(s) is the Min-
Plus convolution.

Figure 5 illustrate the WCTT computation for flow f1:

• (a) first, service curves for source node s1 and tra-
versed output ports at crossed routers are computed
as described previously in this section;

• (b) a service curve for aggregate flow {f1, f2} at output
port R43: (βR43 −α3 −α4)↑ = max(0, 1 ∗ (t− dsw)) =
max(0, 0.93 ∗ (t− 77));

• (c) a service curve for flow f1 offered by the system
composed of the sequence {R23, R42}: (βR12 ⊗ (βR43 −
α3−α4)↑−α2)↑ = max(0, 1∗(t−dsw)) = max(0, 0.75∗
(t− 227));

• (d) an end-to-end individual service curve for flow f1:
β1
e2e = max(0, 0.75 ∗ (t− 228));

• (e) as explained in [5], we can compute a bound on the
WCTT of flow f1 as the maximum horizontal deviation
between α1 and β1

e2e: h(α1, β
1
e2e) = 295 cycles

27

Figure 6: Case study 2: description

Table 2: Case study 2: flows set description

Flow
Period
(cycles)

Length
(flits)

T-bound
(cycles)

K-bound
(cycles)

f1 1000 50 523 337
f2 500 100 523 282
f3 1000 50 774 276
f4 500 100 154 190
f5 1000 50 774 276
f6 500 100 154 190

As we can see in Table 1, for case study 1 using Tilera
Tile64-like NoC leads to lower WCTT bounds than KalRay
MPPA 256-like NOC. All flows in this case study suffer only
from direct blocking in routers, due to round robin arbitra-
tion. Using source regulation or flow control does not im-
pact WCTT. The main reason for the differences in results
of Table 1 is the worst-case delay computation, which is pes-
simistic for KalRay MPPA, because we overestimate round-
robin impact. Removing this pessimism is an open problem,
but it should lead to comparable results for KalRay MPPA
and Tilera Tile. In such a situation Tilera Tile is probably
the best choice, since the overall buffer size is smaller.

3.2 Case study 2
Figure 6 and Table 2 describe the second case study: a

3x3 mesh network with 6 periodic flows. Using the same ap-
proaches as described for case study 1, we computed WCTT
for Tilera (T-bound) and KalRay NoCs (K-bound) and we
reported them in Table 2.

As reported in Table 2, for case study 2, using KalRay-like
NoC implies lower WCTT bounds for flows f1, f2, f3 and f5.
The source node regulation strategy implemented by KalRay
MPPA is clearly better for these flows. This is due to the fact
that the considered configuration leads to indirect blockings
when router flow control is used. These indirect blockings
significantly increase flow WCTT. Conversely they do not
impact WCTT when source node regulation is used. For
flows f4 and f6, which do not suffer from indirect blocking,
using Tilera Tile64-like NoC leads to lower WCTT bounds
than KalRay MPPA 256-like NoC.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we show that flow control implemented in

NoC has a significant impact on flow WCTT. We compare
source node regulation as implemented in KalRay MPPA
and router flow control as implemented in Tilera Tile. We
consider two small case studies. These two case studies show

that flow WCTT highly depends on flow control strategy.
We show that source node regulation leads to smaller WCTT
for one case study while router flow control is better for
the other one. It means that there is no clear winner and
deeper studies are needed in order to be able to determine
the most suitable flow control strategy from flow features.
This should be based on a much larger evaluation of these
strategies, based on representative case studies.

Up to now, we have considered very basic WCTT ap-
proaches. For instance, network calculus approach for KalRay
MPPA doesn’t make any assumption on flow scheduling,
which might be very pessimistic. More elaborate approaches
have to be considered.

Another question concerns the impact of buffer size on
WCTT. To what extend can we decrease the flow WCTT
by increasing buffer size?

5. REFERENCES
[1] B. D. de Dinechin, D. van Amstel, M. Poulhiès, and

G. Lager. Time-critical computing on a single-chip
massively parallel processor. In Design, Automation &
Test in Europe Conference & Exhibition, DATE 2014,
Dresden, March 24-28, 2014, pages 1–6, 2014.

[2] T. Ferrandiz, F. Frances, and C. Fraboul. A
Sensitivity Analysis of Two Worst-Case Delay
Computation Methods for SpaceWire Networks. In
Proc. of the 24th Euromicro Conf. on Real-Time
Systems (ECRTS), pages 47–56, Pisa, Italy, July 2012.

[3] K. Goossens, J. Dielissen, and A. Radulescu. Æthereal
network on chip: Concepts, architectures, and
implementations. IEEE Design & Test of Computers,
22(5):414–421, 2005.

[4] A. Hansson, M. Subburaman, and K. Goossens.
Aelite: A flit-synchronous network on chip with
composable and predictable services. In Proc. of the
Conf. on Design, Automation and Test in Europe
(DATE’09), pages 250–255, Nice, France, 2009.

[5] J. Leboudec and P. Thiran. Network Calculus.
Springer Verlag LNCS volume 2050, 2001.

[6] Z. Lu, M. Millberg, A. Jantsch, A. Bruce, P. van der
Wolf, and T. Henriksson. Flow regulation for on-chip
communication. In Design, Automation Test in Europe
Conference Exhibition, 2009. DATE ’09., pages
578–581, April 2009.

[7] L. Ni and P. McKinley. A survey of wormhole routing
techniques in direct networks. IEEE Transactions on
Computers, 26(2):62–76, Feb 1993.

[8] D. Rahmati, S. Murali, L. Benini, F. Angiolini,
G. De Micheli, and H. Sarbazi-Azad. Computing
accurate performance bounds for best effort
networks-on-chip. IEEE Transactions on Computers,
62(3):452–467, March 2013.

[9] M. Schoeberl, F. Brandner, J. Sparsø, and
E. Kasapaki. A statically scheduled
time-division-multiplexed network-on-chip for
real-time systems. In Proc. of the Intl. Symp. on
Networks-on-Chip (NOCS), pages 152–160,
Copenhagen, Denmark, May 2012.

[10] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao,
B. Edwards, C. Ramey, M. Mattina, C.-C. Miao,
J. F. B. III, and A. Agarwal. On-chip interconnection
architecture of the tile processor. 2007.

28

	Message from the Workshop Chair
	Table of Contents
	Paper
	 Failure tolerance for a multicore real-time system scheduled by PD2
	 Discussion on the Spectral Analysis of Real-Time Multi-Path Tasks
	 Scheduling of parallel applications on many-core architectures with caches: bridging the gap between WCET analysis and schedulability analysis
	 A Comparative Study of the Precision of Stack Cache Occupancy Analyses
	 ASLA: Adaptive System Level in AUTOSAR
	 Towards Utilizing Reconfigurable Shared Resources in Multi-Core Hard Real-Time Systems
	 Regulation versus Flow Control in NoC for Hard Real-time Systems: a Preliminary Case Study

